Abstract
The childhood spinal muscular atrophies (SMAs) are the most common, serious neuromuscular disorders of childhood second to Duchenne muscular dystrophy. A single locus for these disorders has been mapped by recombination events to a region of 0.7 centimorgan (range, 0.1-2.1 centimorgans) between loci D5S435 and MAP1B on chromosome 5q11.2-13.3. By using PCR amplification to screen yeast artificial chromosome (YAC) DNA pools and the PCR-vectorette method to amplify YAC ends, a YAC contig was constructed across the disease gene region. Nine walk steps identified 32 YACs, including a minimum of seven overlapping YAC clones (average size, 460 kb) that span the SMA region. The contig is characterized by a collection of 30 YAC-end sequence tag sites together with seven genetic markers. The entire YAC contig spans a minimum of 3.2 Mb; the SMA locus is confined to roughly half of this region. Microsatellite markers generated along the YAC contig segregate with the SMA locus in all families where the flanking markers (D5S435 and MAP1B) recombine. Construction of a YAC contig across the disease gene region is an essential step in isolation of the SMA-encoding gene.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albertsen H. M., Abderrahim H., Cann H. M., Dausset J., Le Paslier D., Cohen D. Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4256–4260. doi: 10.1073/pnas.87.11.4256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bates G. P., Valdes J., Hummerich H., Baxendale S., Le Paslier D. L., Monaco A. P., Tagle D., MacDonald M. E., Altherr M., Ross M. Characterization of a yeast artificial chromosome contig spanning the Huntington's disease gene candidate region. Nat Genet. 1992 Jun;1(3):180–187. doi: 10.1038/ng0692-180. [DOI] [PubMed] [Google Scholar]
- Bhatt B., Burns J., Flannery D., McGee J. O. Direct visualization of single copy genes on banded metaphase chromosomes by nonisotopic in situ hybridization. Nucleic Acids Res. 1988 May 11;16(9):3951–3961. doi: 10.1093/nar/16.9.3951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brownstein B. H., Silverman G. A., Little R. D., Burke D. T., Korsmeyer S. J., Schlessinger D., Olson M. V. Isolation of single-copy human genes from a library of yeast artificial chromosome clones. Science. 1989 Jun 16;244(4910):1348–1351. doi: 10.1126/science.2544027. [DOI] [PubMed] [Google Scholar]
- Brzustowicz L. M., Kleyn P. W., Boyce F. M., Lien L. L., Monaco A. P., Penchaszadeh G. K., Das K., Wang C. H., Munsat T. L., Ott J. Fine-mapping of the spinal muscular atrophy locus to a region flanked by MAP1B and D5S6. Genomics. 1992 Aug;13(4):991–998. doi: 10.1016/0888-7543(92)90012-h. [DOI] [PubMed] [Google Scholar]
- Brzustowicz L. M., Lehner T., Castilla L. H., Penchaszadeh G. K., Wilhelmsen K. C., Daniels R., Davies K. E., Leppert M., Ziter F., Wood D. Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2-13.3. Nature. 1990 Apr 5;344(6266):540–541. doi: 10.1038/344540a0. [DOI] [PubMed] [Google Scholar]
- Buckler A. J., Chang D. D., Graw S. L., Brook J. D., Haber D. A., Sharp P. A., Housman D. E. Exon amplification: a strategy to isolate mammalian genes based on RNA splicing. Proc Natl Acad Sci U S A. 1991 May 1;88(9):4005–4009. doi: 10.1073/pnas.88.9.4005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans G. A. Combinatoric strategies for genome mapping. Bioessays. 1991 Jan;13(1):39–44. doi: 10.1002/bies.950130108. [DOI] [PubMed] [Google Scholar]
- Foote S., Vollrath D., Hilton A., Page D. C. The human Y chromosome: overlapping DNA clones spanning the euchromatic region. Science. 1992 Oct 2;258(5079):60–66. doi: 10.1126/science.1359640. [DOI] [PubMed] [Google Scholar]
- Gilliam T. C., Brzustowicz L. M., Castilla L. H., Lehner T., Penchaszadeh G. K., Daniels R. J., Byth B. C., Knowles J., Hislop J. E., Shapira Y. Genetic homogeneity between acute and chronic forms of spinal muscular atrophy. Nature. 1990 Jun 28;345(6278):823–825. doi: 10.1038/345823a0. [DOI] [PubMed] [Google Scholar]
- Gilliam T. C., Freimer N. B., Kaufmann C. A., Powchik P. P., Bassett A. S., Bengtsson U., Wasmuth J. J. Deletion mapping of DNA markers to a region of chromosome 5 that cosegregates with schizophrenia. Genomics. 1989 Nov;5(4):940–944. doi: 10.1016/0888-7543(89)90138-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green E. D., Olson M. V. Systematic screening of yeast artificial-chromosome libraries by use of the polymerase chain reaction. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1213–1217. doi: 10.1073/pnas.87.3.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lien L. L., Boyce F. M., Kleyn P., Brzustowicz L. M., Menninger J., Ward D. C., Gilliam T. C., Kunkel L. M. Mapping of human microtubule-associated protein 1B in proximity to the spinal muscular atrophy locus at 5q13. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7873–7876. doi: 10.1073/pnas.88.17.7873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lovett M., Kere J., Hinton L. M. Direct selection: a method for the isolation of cDNAs encoded by large genomic regions. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9628–9632. doi: 10.1073/pnas.88.21.9628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melki J., Sheth P., Abdelhak S., Burlet P., Bachelot M. F., Lathrop M. G., Frezal J., Munnich A. Mapping of acute (type I) spinal muscular atrophy to chromosome 5q12-q14. The French Spinal Muscular Atrophy Investigators. Lancet. 1990 Aug 4;336(8710):271–273. doi: 10.1016/0140-6736(90)91803-i. [DOI] [PubMed] [Google Scholar]
- Nelson D. L., Ledbetter S. A., Corbo L., Victoria M. F., Ramírez-Solis R., Webster T. D., Ledbetter D. H., Caskey C. T. Alu polymerase chain reaction: a method for rapid isolation of human-specific sequences from complex DNA sources. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6686–6690. doi: 10.1073/pnas.86.17.6686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearn J. H., Hudgson P., Walton J. N. A clinical and genetic study of spinal muscular atrophy of adult onset: the autosomal recessive form as a discrete disease entity. Brain. 1978 Dec;101(4):591–606. doi: 10.1093/brain/101.4.591. [DOI] [PubMed] [Google Scholar]
- Pearn J. H. Infantile motor neuron diseases. Adv Neurol. 1982;36:121–130. [PubMed] [Google Scholar]
- Riley J., Butler R., Ogilvie D., Finniear R., Jenner D., Powell S., Anand R., Smith J. C., Markham A. F. A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res. 1990 May 25;18(10):2887–2890. doi: 10.1093/nar/18.10.2887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz D. C., Cantor C. R. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 1984 May;37(1):67–75. doi: 10.1016/0092-8674(84)90301-5. [DOI] [PubMed] [Google Scholar]
- Sherrington R., Melmer G., Dixon M., Curtis D., Mankoo B., Kalsi G., Gurling H. Linkage disequilibrium between two highly polymorphic microsatellites. Am J Hum Genet. 1991 Nov;49(5):966–971. [PMC free article] [PubMed] [Google Scholar]
- Soares V. M., Brzustowicz L. M., Kleyn P. W., Knowles J. A., Palmer D. A., Asokan S., Penchaszadeh G. K., Munsat T. L., Gilliam T. C. Refinement of the spinal muscular atrophy locus to the interval between D5S435 and MAP1B. Genomics. 1993 Feb;15(2):365–371. doi: 10.1006/geno.1993.1069. [DOI] [PubMed] [Google Scholar]