Skip to main content
Thorax logoLink to Thorax
. 1977 Apr;32(2):212–220. doi: 10.1136/thx.32.2.212

Comparison of occlusion pressure and ventilatory responses.

D H Lederer, M D Altose, S G Kelsen, N S Cherniack
PMCID: PMC470574  PMID: 867336

Abstract

The airway pressure 100 msec after the onset of an inspiratory effort against a closed airway (P100, occlusion pressure) is theoretically a more accurate index of respiratory neuron motor output than ventilation. Occlusion pressure and ventilation responses to hypercapnia were compared in repeated trials in 10 normal subjects while in the seated and supine positions. During progressive hypercapnia changes in P100 were also compared to changes in tidal volume and inspiratory airflow. These studies show that occlusion pressure increases linearly with hypercapnia in both sitting and supine subjects. Changing from the seated to the supine position, or vice versa, had no significant effect on either ventilation or occlusion pressure responses to CO2. Correlations between P100 and ventilation or airflow rate were significantly higher than correlations between P100 and tidal volume or breathing frequency. Intermittent random airway occlusion had no effect on either ventilation or pattern of breathing during hypercapnia. Occlusion pressure responses were no less variable than ventilation responses in groups of subjects whether studied seated or supine. However, maintenance of a constant moderate breathing frequency (20 breaths per minute) reduced the interindividual variability in ventilation and occlusion pressure responses to hypercapnia.

Full text

PDF
215

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altose M. D., Kelsen S. G., Stanley N. N., Cherniack N. S., Fishman A. P. Effects of hypercapnia and flow-resistive loading on tracheal pressure during airway occlusion. J Appl Physiol. 1976 Mar;40(3):345–351. doi: 10.1152/jappl.1976.40.3.345. [DOI] [PubMed] [Google Scholar]
  2. Altose M. D., Kelsen S. G., Stanley N. N., Levinson R. S., Cherniack N. S., Fishman A. P. Effects of hypercapnia on mouth pressure during airway occlusion in conscious man. J Appl Physiol. 1976 Mar;40(3):338–344. doi: 10.1152/jappl.1976.40.3.338. [DOI] [PubMed] [Google Scholar]
  3. Arkinstall W. W., Nirmel K., Klissouras V., Milic-Emili J. Genetic differences in the ventilatory response to inhaled CO2. J Appl Physiol. 1974 Jan;36(1):6–11. doi: 10.1152/jappl.1974.36.1.6. [DOI] [PubMed] [Google Scholar]
  4. BRODOVSKY D., MACDONELL J. A., CHERNIACK R. M. The respiratory response to carbon dioxide in health and in emphysema. J Clin Invest. 1960 May;39:724–729. doi: 10.1172/JCI104089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CHERNIACK R. M., SNIDAL D. P. The effect of obstruction to breathing on the ventilatory response to CO2. J Clin Invest. 1956 Nov;35(11):1286–1290. doi: 10.1172/JCI103383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CORDA M., EKLUND G., VON EULER EXTERNAL INTERCOSTAL AND PHRENIC ALPHA-MOTOR RESPONSES TO CHANGES IN RESPIRATORY LOAD. Acta Physiol Scand. 1965 Mar;63:391–400. doi: 10.1111/j.1748-1716.1965.tb04079.x. [DOI] [PubMed] [Google Scholar]
  7. Cosgrove J. F., Neunburger N., Bryan M. H., Bryan A. C., Levison H. A new method of evaluating the chemosensitivity of the respiratory center in children. Pediatrics. 1975 Dec;56(6):973–980. [PubMed] [Google Scholar]
  8. ELDRIDGE F., DAVIS J. M. Effect of mechanical factors on respiratory work and ventilatory responses to carbon dioxide. J Appl Physiol. 1959 Sep;14:721–726. doi: 10.1152/jappl.1959.14.5.721. [DOI] [PubMed] [Google Scholar]
  9. Evanich M. J., Franco M. J., Lourenço R. V. Force output of the diaphragm as a function of phrenic nerve firing rate and lung volume. J Appl Physiol. 1973 Aug;35(2):208–212. doi: 10.1152/jappl.1973.35.2.208. [DOI] [PubMed] [Google Scholar]
  10. Grassino A. E., Lewinsohn G. E., Tyler J. M. Effects of hyperinflation of the thorax on the mechanics of breathing. J Appl Physiol. 1973 Sep;35(3):336–342. doi: 10.1152/jappl.1973.35.3.336. [DOI] [PubMed] [Google Scholar]
  11. Grunstein M. M., Younes M., Milic-Emili J. Control of tidal volume and respiratory frequency in anesthetized cats. J Appl Physiol. 1973 Oct;35(4):463–476. doi: 10.1152/jappl.1973.35.4.463. [DOI] [PubMed] [Google Scholar]
  12. Hey E. N., Lloyd B. B., Cunningham D. J., Jukes M. G., Bolton D. P. Effects of various respiratory stimuli on the depth and frequency of breathing in man. Respir Physiol. 1966;1(2):193–205. doi: 10.1016/0034-5687(66)90016-8. [DOI] [PubMed] [Google Scholar]
  13. Hirshman C. A., McCullough R. E., Weil J. V. Normal values for hypoxic and hypercapnic ventilaroty drives in man. J Appl Physiol. 1975 Jun;38(6):1095–1098. doi: 10.1152/jappl.1975.38.6.1095. [DOI] [PubMed] [Google Scholar]
  14. Kallos T., Hudson H. E., Rouge J. C., Smith T. C. Interaction of the effects of naloxone and oxymorphone on human respiration. Anesthesiology. 1972 Mar;36(3):278–285. doi: 10.1097/00000542-197203000-00016. [DOI] [PubMed] [Google Scholar]
  15. Kelsen S. G., Altose M. D., Stanley N. N., Levinson R. S., Cherniack N. S., Fishman A. P. Effect of hypoxia on the pressure developed by inspiratory muscles during airway occlusion. J Appl Physiol. 1976 Mar;40(3):372–378. doi: 10.1152/jappl.1976.40.3.372. [DOI] [PubMed] [Google Scholar]
  16. Knill R., Andrews W., Bryan A. C., Bryan M. H. Respiratory load compensation in infants. J Appl Physiol. 1976 Mar;40(3):357–361. doi: 10.1152/jappl.1976.40.3.357. [DOI] [PubMed] [Google Scholar]
  17. Matthews A. W., Howell J. B. The rate of isometric inspiratory pressure development as a measure of responsiveness to carbon dioxide in man. Clin Sci Mol Med. 1975 Jul;49(1):57–68. doi: 10.1042/cs0490057. [DOI] [PubMed] [Google Scholar]
  18. Patrick J. M., Howard A. The influence of age, sex, body size and lung size on the control and pattern of breathing during CO 2 inhalation in Caucasians. Respir Physiol. 1972 Dec;16(3):337–350. doi: 10.1016/0034-5687(72)90063-1. [DOI] [PubMed] [Google Scholar]
  19. Read D. J. A clinical method for assessing the ventilatory response to carbon dioxide. Australas Ann Med. 1967 Feb;16(1):20–32. doi: 10.1111/imj.1967.16.1.20. [DOI] [PubMed] [Google Scholar]
  20. Rebuck A. S., Rigg J. R., Kangalee M., Pengelly L. D. Control of tidal volume during rebreathing. J Appl Physiol. 1974 Oct;37(4):475–478. doi: 10.1152/jappl.1974.37.4.475. [DOI] [PubMed] [Google Scholar]
  21. Rigg J. R., Rebuck A. S., Campbell E. J. Effect of posture on the ventilatory response to CO2. J Appl Physiol. 1974 Oct;37(4):487–490. doi: 10.1152/jappl.1974.37.4.487. [DOI] [PubMed] [Google Scholar]
  22. Saunders N. A., Heilpern S., Rebuck A. S. Relation between personality and ventilatory response to carbon dioxide in normal subjects: a role in asthma? Br Med J. 1972 Mar 18;1(5802):719–721. doi: 10.1136/bmj.1.5802.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Whitelaw W. A., Derenne J. P., Milic-Emili J. Occlusion pressure as a measure of respiratory center output in conscious man. Respir Physiol. 1975 Mar;23(2):181–199. doi: 10.1016/0034-5687(75)90059-6. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES