Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Nov 4;71(Pt 12):1433–1435. doi: 10.1107/S2056989015019490

Crystal structure of 2-{[(E)-(4-anilinophen­yl)iminium­yl]meth­yl}-5-(di­ethyl­amino)­phenolate

Md Serajul Haque Faizi a, Kateryna A Ohui b,*, Irina A Golenya b
PMCID: PMC4719807  PMID: 26870398

The title compound, C23H25N3O, crystallized with one single mol­ecule in the asymmetric unit and present in the zwitterionic form. In the crystal, mol­ecules are connected by N—H⋯O hydrogen bonds generating –A–B–A–B– zigzag chains extending along [010]. The chains are linked via C—H⋯π inter­actions and π–π inter­actions [with a centroid–centroid distance of 3.444 (3) Å)] between the benzene ring and the imino group of symmetry-related mol­ecules, forming slabs lying parallel to (100).

Keywords: crystal structure, zwitterion, N-phenyl-p-phenyl­enedi­amine, DPIM, Schiff base, hydrogen bonding

Abstract

The title compound, C23H25N3O, crystallized with one single mol­ecule in the asymmetric unit and is present in the zwitterionic form. There is an intra­molecular N—H⋯O hydrogen bond in the mol­ecule with the phenol ring being inclined to the central benzene ring by 20.67 (14)°. The terminal amino­phenyl ring forms a dihedral angle of 54.21 (14)° with the central benzene ring. The two outer aromatic rings are inclined to one another by 74.54 (14)°. In the crystal, the mol­ecules are connected by N—H⋯O hydrogen bonds, with adjacent molecules related by a 21 screw axis, generating –A–B–A–B– zigzag chains extending along [010]. The chains are linked via C—H⋯π and π–π inter­actions [with a centroid–centroid distance of 3.444 (3) Å] between the benzene ring and the imino group of symmetry-related mol­ecules, forming slabs lying parallel to (100).

Chemical context  

Our research inter­est focuses on study of Schiff bases derived from 4-di­ethyl­amino-2-hy­droxy­benzaldehyde. It is well known that Schiff bases of salicyl­aldehyde derivative may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the mol­ecule, respectively (Cohen & Schmidt, 1964; Amimoto & Kawato, 2005). Schiff bases often exhibit various biological activities and in many cases have been shown to possess anti­bacterial, anti­cancer, anti-inflammatory and anti­toxic properties (Lozier et al., 1975). They are used as anion sensors (Dalapati et al., 2011), as non-linear optical compounds (Sun et al., 2012) and as versatile polynuclear ligands for multinuclear magnetic exchange clusters (Moroz et al., 2012). Schiff bases have also been used to prepare metal complexes (Faizi & Sen, 2014; Faizi & Hussain, 2014; Penkova et al., 2010). We report herein on the crystal structure of the title compound synthesized by the condensation reaction of 4-di­ethyl­amino-2-hy­droxy­benzaldehyde and N-phenyl-p-phenyl­enedi­amine.graphic file with name e-71-01433-scheme1.jpg

Structural commentary  

In the solid state, the title compound (Fig. 1) exists in the zwitterionic form. An intra­molecular N—H⋯O hydrogen bond stabilizes the mol­ecular structure (Table 1 and Fig. 2); this is an uncommon feature in related imine-phenol compounds. The imine group, which displays a C6—C11—N2—C12 torsion angle of −178.3 (2)°, contributes to the general non-planarity of the mol­ecule. The phenol ring (C1–C6) is inclined to the central benzene ring (C12–C17) by 20.67 (14)°.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling and the intra­molecular N—H⋯O hydrogen bond as a dashed line (see Table 1 for details). Displacement ellipsoids are drawn at the 40% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1 0.90 (2) 1.83 (2) 2.609 (2) 143 (2)
N3—H3H⋯O1i 0.85 (2) 2.05 (2) 2.900 (3) 175 (2)
C7—H7ACg ii 0.97 2.87 3.465 (3) 121

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

A view of the one-dimensional –A–B–A–B– zigzag hydrogen-bonded chain extending along the b axis. Hydrogen bonds are shown as dashed lines; see Table 1 for details.

The conformation of the mol­ecule is determined by the orientation of the terminal amino­phenyl ring (C18–C23) with respect to the central benzene ring (C12–C17); the dihedral angle between them is 54.21 (14)°. The two outer aromatic rings (C18–C23 and C1–C6) are inclined to one another by 74.54 (14)°. The C—N, C=N and C—C bond lengths are normal and close to the values observed in related structures (Sliva et al., 1997; Petrusenko et al., 1997; Fritsky et al., 2006).

Supra­molecular features  

In the crystal, mol­ecules are connected by N—H⋯O hydrogen bonds generating –ABAB– zigzag chains extending along [010]; Table 1 and Fig. 3. The chains are linked via C—H⋯π inter­actions and π–π inter­actions between the benzene ring and the imino group of neighbouring mol­ecules, forming slabs lying parallel to (100); see Table 1 and Fig. 3. The π–π inter­actions are defined by Cg1⋯Cg2i = 3.444 (3) Å, where Cg1 and Cg2 are the centroids of atoms C1–C6 and the midpoint of atoms N2/C11, respectively [symmetry code: (i) x, −y + Inline graphic, z − Inline graphic].

Figure 3.

Figure 3

A view along the c axis of the crystal packing of the title compound. The hydrogen bonds, C—H⋯π inter­actions and π–π inter­actions between the benzene ring and the imino group are shown as dashed lines (see Table 1 for details; for the latter inter­actions, the atoms involved are shown).

Database survey  

There are very few examples of similar compounds in the literature although some metal complexes of similar ligands have been reported (Xie et al., 2013; Safin et al., 2012). A search of the Cambridge Structural Database (Version 5.35, May 2014; Groom & Allen, 2014) revealed the structure of one very similar compound, viz. N-[(E)-4-chloro­benzyl­idene]-N′-phenyl­benzene-1,4-di­amine (Nor Hashim et al., 2010, in which the 2-phenol ring in the title compound is replaced by a 4-chloro­benzene ring. The central six-membered ring makes a dihedral angle of 12.26 (10)° with the 4-chloro­phenyl ring. The corresponding dihedral angle in the title compound is 20.67 (14)°.

Synthesis and crystallization  

100 mg (1 mmol) of N-phenyl-p-phenyl­enedi­amine was dissolved in 10 ml of absolute ethanol. To this solution, 85 mg (1 mmol) of 4-di­ethyl­amino-2-hy­droxy­benzaldehyde in 5 ml of absolute ethanol was dropwisely added under stirring. This mixture was stirred for 10 min, two drops of glacial acetic acid were then added and the mixture was further refluxed for 2 h. The resulting yellow precipitate was recovered by filtration, washed several times with a small portions of EtOH and then with diethyl ether to give 150 mg (88%) of 5-di­ethyl­amino-2-[(E)-{[4-(phenyl­amino)­phen­yl]imino­meth­yl}phenol] (DPIM). Crystals of the title compound suitable for X-ray analysis were obtained within three days by slow evaporation of the DMF solvent.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The N—H and H atoms were located in a difference Fourier map. Their positional and isotropic thermal parameters were included in further stages of the refinement. All C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and with U iso(H) = 1.2–1.5U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C23H25N3O
M r 359.46
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 18.0358 (16), 11.3851 (8), 9.4815 (9)
β (°) 104.560 (3)
V3) 1884.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.20 × 0.15 × 0.12
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2004)
T min, T max 0.984, 0.991
No. of measured, independent and observed [I > 2σ(I)’] reflections 14768, 3322, 2186
R int 0.078
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.054, 0.138, 1.00
No. of reflections 3322
No. of parameters 254
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.30

Computer programs: SMART and SAINT (Bruker, 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenberg & Putz, 2006), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015019490/lh5793sup1.cif

e-71-01433-sup1.cif (27.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015019490/lh5793Isup2.hkl

e-71-01433-Isup2.hkl (163KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015019490/lh5793Isup3.cml

CCDC reference: 1431311

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C23H25N3O F(000) = 768
Mr = 359.46 Dx = 1.267 Mg m3
Monoclinic, P21/c Melting point: 270 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 18.0358 (16) Å Cell parameters from 2553 reflections
b = 11.3851 (8) Å θ = 2.7–23.7°
c = 9.4815 (9) Å µ = 0.08 mm1
β = 104.560 (3)° T = 100 K
V = 1884.4 (3) Å3 Needle, dark yellow
Z = 4 0.20 × 0.15 × 0.12 mm

Data collection

Bruker SMART APEX CCD diffractometer 3322 independent reflections
Radiation source: fine-focus sealed tube 2186 reflections with I > 2σ(I)'
Graphite monochromator Rint = 0.078
ω–scans θmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −19→21
Tmin = 0.984, Tmax = 0.991 k = −13→13
14768 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0763P)2] where P = (Fo2 + 2Fc2)/3
3322 reflections (Δ/σ)max < 0.001
254 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.16973 (12) 0.14061 (19) −0.0731 (3) 0.0162 (5)
C2 0.22412 (11) 0.10711 (19) −0.1497 (2) 0.0168 (5)
H2 0.2319 0.0275 −0.1624 0.020*
C3 0.26674 (11) 0.18820 (19) −0.2072 (2) 0.0160 (5)
C4 0.25415 (12) 0.31118 (19) −0.1877 (3) 0.0174 (5)
H4 0.2823 0.3671 −0.2235 0.021*
C5 0.20136 (12) 0.34542 (19) −0.1173 (3) 0.0185 (5)
H5 0.1937 0.4254 −0.1069 0.022*
C6 0.15719 (11) 0.26528 (18) −0.0586 (2) 0.0156 (5)
C7 0.36691 (12) 0.2388 (2) −0.3332 (3) 0.0220 (6)
H7A 0.3355 0.3049 −0.3767 0.026*
H7B 0.3863 0.2018 −0.4089 0.026*
C8 0.43420 (13) 0.2845 (2) −0.2161 (3) 0.0284 (6)
H8A 0.4157 0.3308 −0.1476 0.043*
H8B 0.4661 0.3322 −0.2602 0.043*
H8C 0.4634 0.2195 −0.1666 0.043*
C9 0.33326 (15) 0.0308 (2) −0.3032 (3) 0.0325 (7)
H9A 0.3523 0.0229 −0.3898 0.039*
H9B 0.2852 −0.0117 −0.3203 0.039*
C10 0.39020 (15) −0.0248 (2) −0.1758 (3) 0.0445 (8)
H10A 0.4397 0.0102 −0.1658 0.067*
H10B 0.3932 −0.1076 −0.1927 0.067*
H10C 0.3738 −0.0122 −0.0882 0.067*
C11 0.10234 (11) 0.30625 (19) 0.0085 (2) 0.0175 (5)
H11 0.0970 0.3871 0.0163 0.021*
C12 −0.00088 (11) 0.27358 (19) 0.1280 (2) 0.0159 (5)
C13 −0.00286 (12) 0.38568 (19) 0.1858 (3) 0.0180 (6)
H13 0.0362 0.4388 0.1853 0.022*
C14 −0.06264 (11) 0.41801 (19) 0.2439 (3) 0.0183 (6)
H14 −0.0639 0.4936 0.2805 0.022*
C15 −0.12107 (12) 0.33966 (19) 0.2488 (3) 0.0163 (5)
C16 −0.11642 (12) 0.22592 (19) 0.1981 (3) 0.0202 (6)
H16 −0.1534 0.1710 0.2052 0.024*
C17 −0.05756 (12) 0.19375 (19) 0.1374 (3) 0.0182 (5)
H17 −0.0558 0.1178 0.1024 0.022*
C18 −0.25825 (12) 0.36660 (18) 0.2449 (3) 0.0167 (5)
C19 −0.30949 (12) 0.41195 (19) 0.3197 (3) 0.0201 (6)
H19 −0.2908 0.4431 0.4126 0.024*
C20 −0.38707 (12) 0.41113 (19) 0.2581 (3) 0.0231 (6)
H20 −0.4201 0.4423 0.3095 0.028*
C21 −0.41679 (13) 0.3645 (2) 0.1205 (3) 0.0251 (6)
H21 −0.4693 0.3646 0.0789 0.030*
C22 −0.36671 (13) 0.31798 (19) 0.0465 (3) 0.0241 (6)
H22 −0.3860 0.2859 −0.0457 0.029*
C23 −0.28811 (12) 0.31815 (19) 0.1069 (3) 0.0204 (6)
H23 −0.2554 0.2860 0.0555 0.025*
N1 0.31894 (10) 0.15485 (16) −0.2813 (2) 0.0205 (5)
N2 0.05736 (10) 0.23777 (17) 0.0618 (2) 0.0170 (5)
N3 −0.18057 (10) 0.37535 (18) 0.3112 (2) 0.0199 (5)
O1 0.13165 (8) 0.06417 (12) −0.01909 (17) 0.0187 (4)
H2N 0.0678 (14) 0.161 (2) 0.050 (3) 0.038 (8)*
H3H −0.1685 (13) 0.430 (2) 0.374 (3) 0.024 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0140 (11) 0.0188 (12) 0.0139 (14) −0.0018 (10) −0.0001 (10) 0.0019 (10)
C2 0.0178 (12) 0.0127 (12) 0.0190 (15) 0.0013 (9) 0.0028 (11) −0.0016 (10)
C3 0.0122 (11) 0.0231 (13) 0.0108 (13) 0.0026 (10) −0.0006 (10) −0.0003 (10)
C4 0.0147 (12) 0.0174 (12) 0.0191 (14) −0.0012 (10) 0.0026 (11) 0.0042 (10)
C5 0.0168 (12) 0.0165 (12) 0.0204 (15) 0.0024 (10) 0.0012 (11) 0.0018 (10)
C6 0.0119 (11) 0.0172 (12) 0.0161 (14) 0.0006 (10) 0.0008 (10) 0.0015 (10)
C7 0.0190 (12) 0.0279 (14) 0.0209 (15) 0.0008 (11) 0.0086 (11) 0.0013 (11)
C8 0.0212 (13) 0.0314 (15) 0.0331 (17) −0.0008 (11) 0.0074 (12) 0.0004 (12)
C9 0.0409 (15) 0.0240 (14) 0.0423 (19) 0.0041 (12) 0.0286 (14) −0.0026 (13)
C10 0.0403 (16) 0.0339 (16) 0.069 (2) 0.0145 (13) 0.0320 (17) 0.0186 (16)
C11 0.0166 (12) 0.0146 (12) 0.0191 (15) −0.0008 (10) 0.0004 (11) 0.0022 (10)
C12 0.0134 (11) 0.0201 (13) 0.0138 (14) 0.0018 (10) 0.0024 (10) 0.0015 (10)
C13 0.0139 (12) 0.0185 (13) 0.0200 (15) −0.0027 (10) 0.0015 (11) 0.0003 (10)
C14 0.0166 (12) 0.0172 (12) 0.0200 (15) 0.0010 (10) 0.0026 (11) −0.0029 (10)
C15 0.0144 (11) 0.0195 (13) 0.0142 (14) 0.0019 (10) 0.0021 (10) 0.0000 (10)
C16 0.0164 (12) 0.0177 (13) 0.0264 (16) −0.0027 (10) 0.0054 (11) 0.0016 (11)
C17 0.0173 (12) 0.0152 (12) 0.0206 (15) 0.0005 (10) 0.0021 (11) −0.0027 (10)
C18 0.0161 (12) 0.0121 (11) 0.0222 (15) 0.0000 (10) 0.0054 (11) 0.0052 (10)
C19 0.0207 (12) 0.0173 (13) 0.0232 (15) −0.0022 (10) 0.0073 (11) −0.0002 (11)
C20 0.0174 (13) 0.0212 (13) 0.0336 (18) 0.0009 (10) 0.0120 (12) 0.0020 (12)
C21 0.0134 (12) 0.0228 (13) 0.0367 (18) −0.0020 (10) 0.0019 (12) 0.0015 (12)
C22 0.0227 (13) 0.0225 (13) 0.0238 (16) −0.0027 (11) −0.0003 (12) −0.0014 (11)
C23 0.0198 (12) 0.0176 (13) 0.0246 (16) 0.0018 (10) 0.0069 (11) 0.0012 (11)
N1 0.0204 (10) 0.0201 (11) 0.0232 (13) 0.0025 (9) 0.0095 (9) 0.0008 (9)
N2 0.0165 (10) 0.0148 (11) 0.0202 (13) 0.0016 (9) 0.0056 (9) 0.0002 (9)
N3 0.0138 (10) 0.0225 (12) 0.0238 (13) −0.0010 (9) 0.0052 (9) −0.0077 (10)
O1 0.0161 (8) 0.0164 (8) 0.0241 (10) −0.0014 (7) 0.0064 (7) 0.0021 (7)

Geometric parameters (Å, º)

C1—O1 1.292 (2) C11—H11 0.9300
C1—C2 1.412 (3) C12—C17 1.387 (3)
C1—C6 1.449 (3) C12—C13 1.393 (3)
C2—C3 1.397 (3) C12—N2 1.413 (3)
C2—H2 0.9300 C13—C14 1.378 (3)
C3—N1 1.363 (3) C13—H13 0.9300
C3—C4 1.438 (3) C14—C15 1.390 (3)
C4—C5 1.351 (3) C14—H14 0.9300
C4—H4 0.9300 C15—C16 1.391 (3)
C5—C6 1.414 (3) C15—N3 1.409 (3)
C5—H5 0.9300 C16—C17 1.378 (3)
C6—C11 1.385 (3) C16—H16 0.9300
C7—N1 1.455 (3) C17—H17 0.9300
C7—C8 1.516 (3) C18—N3 1.388 (3)
C7—H7A 0.9700 C18—C23 1.397 (3)
C7—H7B 0.9700 C18—C19 1.398 (3)
C8—H8A 0.9600 C19—C20 1.374 (3)
C8—H8B 0.9600 C19—H19 0.9300
C8—H8C 0.9600 C20—C21 1.385 (3)
C9—N1 1.460 (3) C20—H20 0.9300
C9—C10 1.513 (4) C21—C22 1.381 (3)
C9—H9A 0.9700 C21—H21 0.9300
C9—H9B 0.9700 C22—C23 1.389 (3)
C10—H10A 0.9600 C22—H22 0.9300
C10—H10B 0.9600 C23—H23 0.9300
C10—H10C 0.9600 N2—H2N 0.90 (2)
C11—N2 1.314 (3) N3—H3H 0.85 (2)
O1—C1—C2 122.0 (2) C17—C12—C13 118.9 (2)
O1—C1—C6 120.73 (19) C17—C12—N2 118.80 (19)
C2—C1—C6 117.29 (19) C13—C12—N2 122.34 (19)
C3—C2—C1 123.0 (2) C14—C13—C12 120.1 (2)
C3—C2—H2 118.5 C14—C13—H13 119.9
C1—C2—H2 118.5 C12—C13—H13 119.9
N1—C3—C2 122.4 (2) C13—C14—C15 121.2 (2)
N1—C3—C4 119.32 (19) C13—C14—H14 119.4
C2—C3—C4 118.23 (19) C15—C14—H14 119.4
C5—C4—C3 119.9 (2) C14—C15—C16 118.27 (19)
C5—C4—H4 120.0 C14—C15—N3 119.5 (2)
C3—C4—H4 120.0 C16—C15—N3 122.1 (2)
C4—C5—C6 123.0 (2) C17—C16—C15 120.8 (2)
C4—C5—H5 118.5 C17—C16—H16 119.6
C6—C5—H5 118.5 C15—C16—H16 119.6
C11—C6—C5 120.1 (2) C16—C17—C12 120.7 (2)
C11—C6—C1 121.3 (2) C16—C17—H17 119.7
C5—C6—C1 118.54 (19) C12—C17—H17 119.7
N1—C7—C8 114.40 (19) N3—C18—C23 124.1 (2)
N1—C7—H7A 108.7 N3—C18—C19 117.7 (2)
C8—C7—H7A 108.7 C23—C18—C19 118.2 (2)
N1—C7—H7B 108.7 C20—C19—C18 120.9 (2)
C8—C7—H7B 108.7 C20—C19—H19 119.5
H7A—C7—H7B 107.6 C18—C19—H19 119.5
C7—C8—H8A 109.5 C19—C20—C21 121.0 (2)
C7—C8—H8B 109.5 C19—C20—H20 119.5
H8A—C8—H8B 109.5 C21—C20—H20 119.5
C7—C8—H8C 109.5 C22—C21—C20 118.5 (2)
H8A—C8—H8C 109.5 C22—C21—H21 120.7
H8B—C8—H8C 109.5 C20—C21—H21 120.7
N1—C9—C10 113.6 (2) C21—C22—C23 121.3 (2)
N1—C9—H9A 108.9 C21—C22—H22 119.3
C10—C9—H9A 108.9 C23—C22—H22 119.3
N1—C9—H9B 108.9 C22—C23—C18 120.0 (2)
C10—C9—H9B 108.9 C22—C23—H23 120.0
H9A—C9—H9B 107.7 C18—C23—H23 120.0
C9—C10—H10A 109.5 C3—N1—C7 122.52 (19)
C9—C10—H10B 109.5 C3—N1—C9 120.85 (19)
H10A—C10—H10B 109.5 C7—N1—C9 116.48 (18)
C9—C10—H10C 109.5 C11—N2—C12 126.83 (19)
H10A—C10—H10C 109.5 C11—N2—H2N 110.9 (15)
H10B—C10—H10C 109.5 C12—N2—H2N 122.3 (16)
N2—C11—C6 123.9 (2) C18—N3—C15 125.3 (2)
N2—C11—H11 118.0 C18—N3—H3H 114.8 (15)
C6—C11—H11 118.0 C15—N3—H3H 114.7 (16)
O1—C1—C2—C3 −179.1 (2) N2—C12—C17—C16 −178.5 (2)
C6—C1—C2—C3 1.7 (3) N3—C18—C19—C20 177.1 (2)
C1—C2—C3—N1 −179.8 (2) C23—C18—C19—C20 −1.3 (3)
C1—C2—C3—C4 −0.3 (3) C18—C19—C20—C21 0.5 (3)
N1—C3—C4—C5 178.5 (2) C19—C20—C21—C22 0.4 (3)
C2—C3—C4—C5 −1.0 (3) C20—C21—C22—C23 −0.5 (3)
C3—C4—C5—C6 0.8 (3) C21—C22—C23—C18 −0.4 (3)
C4—C5—C6—C11 −178.0 (2) N3—C18—C23—C22 −177.1 (2)
C4—C5—C6—C1 0.8 (3) C19—C18—C23—C22 1.2 (3)
O1—C1—C6—C11 −2.4 (3) C2—C3—N1—C7 −175.9 (2)
C2—C1—C6—C11 176.8 (2) C4—C3—N1—C7 4.5 (3)
O1—C1—C6—C5 178.8 (2) C2—C3—N1—C9 −0.5 (3)
C2—C1—C6—C5 −2.0 (3) C4—C3—N1—C9 180.0 (2)
C5—C6—C11—N2 177.8 (2) C8—C7—N1—C3 77.6 (3)
C1—C6—C11—N2 −0.9 (3) C8—C7—N1—C9 −98.1 (2)
C17—C12—C13—C14 −3.6 (3) C10—C9—N1—C3 −84.0 (3)
N2—C12—C13—C14 177.3 (2) C10—C9—N1—C7 91.7 (3)
C12—C13—C14—C15 1.3 (3) C6—C11—N2—C12 −178.3 (2)
C13—C14—C15—C16 2.2 (3) C17—C12—N2—C11 160.3 (2)
C13—C14—C15—N3 179.0 (2) C13—C12—N2—C11 −20.5 (3)
C14—C15—C16—C17 −3.4 (3) C23—C18—N3—C15 1.5 (3)
N3—C15—C16—C17 179.9 (2) C19—C18—N3—C15 −176.8 (2)
C15—C16—C17—C12 1.2 (4) C14—C15—N3—C18 127.6 (2)
C13—C12—C17—C16 2.3 (3) C16—C15—N3—C18 −55.7 (3)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
N2—H2N···O1 0.90 (2) 1.83 (2) 2.609 (2) 143 (2)
N3—H3H···O1i 0.85 (2) 2.05 (2) 2.900 (3) 175 (2)
C7—H7A···Cgii 0.97 2.87 3.465 (3) 121

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x, −y+1/2, z−1/2.

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Amimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 207–226.
  3. Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cohen, M. D. & Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 1996–2000.
  6. Dalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluorine Chem. 132, 536–540.
  7. Faizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197. [DOI] [PMC free article] [PubMed]
  8. Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173. [DOI] [PMC free article] [PubMed]
  9. Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127. [DOI] [PubMed]
  10. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  11. Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962. [DOI] [PMC free article] [PubMed]
  12. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  13. Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. [DOI] [PubMed]
  14. Nor Hashim, N. Z., Kassim, K. & Yamin, B. M. (2010). Acta Cryst. E66, o2039. [DOI] [PMC free article] [PubMed]
  15. Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040.
  16. Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274.
  17. Safin, D. A., Robeyns, K. & Garcia, Y. (2012). RSC Adv. 2, 11379–11388.
  18. Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997). J. Chem. Soc. Dalton Trans. pp. 273–276.
  21. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  22. Sun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta Part A, 96, 42–50. [DOI] [PubMed]
  23. Xie, Y.-Z., Shan, G.-G., Li, P., Zhou, Z.-Y. & Su, Z.-M. (2013). Dyes Pigments, 96, 467–474.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015019490/lh5793sup1.cif

e-71-01433-sup1.cif (27.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015019490/lh5793Isup2.hkl

e-71-01433-Isup2.hkl (163KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015019490/lh5793Isup3.cml

CCDC reference: 1431311

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES