Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Sep 1;90(17):8073–8077. doi: 10.1073/pnas.90.17.8073

Expression cloning of rat renal Na+/SO4(2-) cotransport.

D Markovich 1, J Forgo 1, G Stange 1, J Biber 1, H Murer 1
PMCID: PMC47290  PMID: 7690140

Abstract

Injection of rat kidney cortex mRNA into Xenopus laevis oocytes leads to a stimulation of Na(+)-dependent SO4(2-) uptake. Based on this information, we have isolated from a corresponding library a cDNA (NaSi-1) that is most likely related to a Na+/SO4(2-) cotransport system. NaSi-1 cRNA leads in a time- and dose-dependent manner to specific stimulation of Na(+)-dependent SO4(2-) uptake in oocytes. The apparent affinity constants of the NaSi-1 cRNA-expressed transport resemble those of Na+/SO4(2-) cotransport in brush-border membrane. The NaSi-1 cDNA contains 2239 bp [including a poly(A) tail] and encodes a protein of 595 amino acids (66.05 kDa); the hydropathy profile suggests at least eight membrane-spanning regions. In vitro translation of NaSi-1 cRNA results in a protein of the expected size and suggests glycosylation. Northern blot analysis shows signals of 2.3 and 2.9 kb in kidney (more abundant in cortex than in papilla/medulla) and in mucosa of small intestine of rats. The above data indicate that we have structurally identified a membrane protein involved in renal and small-intestinal brush-border membrane Na+/SO4(2-) cotransport.

Full text

PDF
8077

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahearn G. A., Murer H. Functional roles of Na+ and H+ in SO2-4 transport by rabbit ileal brush border membrane vesicles. J Membr Biol. 1984;78(3):177–186. doi: 10.1007/BF01925966. [DOI] [PubMed] [Google Scholar]
  2. Alonso S., Minty A., Bourlet Y., Buckingham M. Comparison of three actin-coding sequences in the mouse; evolutionary relationships between the actin genes of warm-blooded vertebrates. J Mol Evol. 1986;23(1):11–22. doi: 10.1007/BF02100994. [DOI] [PubMed] [Google Scholar]
  3. Bertran J., Magagnin S., Werner A., Markovich D., Biber J., Testar X., Zorzano A., Kühn L. C., Palacin M., Murer H. Stimulation of system y(+)-like amino acid transport by the heavy chain of human 4F2 surface antigen in Xenopus laevis oocytes. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5606–5610. doi: 10.1073/pnas.89.12.5606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bertran J., Werner A., Moore M. L., Stange G., Markovich D., Biber J., Testar X., Zorzano A., Palacin M., Murer H. Expression cloning of a cDNA from rabbit kidney cortex that induces a single transport system for cystine and dibasic and neutral amino acids. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5601–5605. doi: 10.1073/pnas.89.12.5601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bertran J., Werner A., Stange G., Markovich D., Biber J., Testar X., Zorzano A., Palacin M., Murer H. Expression of Na(+)-independent amino acid transport in Xenopus laevis oocytes by injection of rabbit kidney cortex mRNA. Biochem J. 1992 Feb 1;281(Pt 3):717–723. doi: 10.1042/bj2810717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bästlein C., Burckhardt G. Sensitivity of rat renal luminal and contraluminal sulfate transport systems to DIDS. Am J Physiol. 1986 Feb;250(2 Pt 2):F226–F234. doi: 10.1152/ajprenal.1986.250.2.F226. [DOI] [PubMed] [Google Scholar]
  7. David C., Ullrich K. J. Substrate specificity of the luminal Na(+)-dependent sulphate transport system in the proximal renal tubule as compared to the contraluminal sulphate exchange system. Pflugers Arch. 1992 Aug;421(5):455–465. doi: 10.1007/BF00370256. [DOI] [PubMed] [Google Scholar]
  8. Deguchi Y., Yamato I., Anraku Y. Nucleotide sequence of gltS, the Na+/glutamate symport carrier gene of Escherichia coli B. J Biol Chem. 1990 Dec 15;265(35):21704–21708. [PubMed] [Google Scholar]
  9. Klein P., Kanehisa M., DeLisi C. The detection and classification of membrane-spanning proteins. Biochim Biophys Acta. 1985 May 28;815(3):468–476. doi: 10.1016/0005-2736(85)90375-x. [DOI] [PubMed] [Google Scholar]
  10. Kong C. T., Yet S. F., Lever J. E. Cloning and expression of a mammalian Na+/amino acid cotransporter with sequence similarity to Na+/glucose cotransporters. J Biol Chem. 1993 Jan 25;268(3):1509–1512. [PubMed] [Google Scholar]
  11. Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  13. Lücke H., Stange G., Murer H. Sulphate-ion/sodium-ion co-transport by brush-border membrane vesicles isolated from rat kidney cortex. Biochem J. 1979 Jul 15;182(1):223–229. doi: 10.1042/bj1820223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Magagnin S., Bertran J., Werner A., Markovich D., Biber J., Palacín M., Murer H. Poly(A)+ RNA from rabbit intestinal mucosa induces b0,+ and y+ amino acid transport activities in Xenopus laevis oocytes. J Biol Chem. 1992 Aug 5;267(22):15384–15390. [PubMed] [Google Scholar]
  15. Magagnin S., Werner A., Markovich D., Sorribas V., Stange G., Biber J., Murer H. Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5979–5983. doi: 10.1073/pnas.90.13.5979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Markovich D., Stange G., Bertran J., Palacin M., Werner A., Biber J., Murer H. Two mRNA transcripts (rBAT-1 and rBAT-2) are involved in system b0,(+)-related amino acid transport. J Biol Chem. 1993 Jan 15;268(2):1362–1367. [PubMed] [Google Scholar]
  17. Murer H. Homer Smith Award. Cellular mechanisms in proximal tubular Pi reabsorption: some answers and more questions. J Am Soc Nephrol. 1992 Jun;2(12):1649–1665. doi: 10.1681/ASN.V2121649. [DOI] [PubMed] [Google Scholar]
  18. Pajor A. M., Hirayama B. A., Wright E. M. Molecular evidence for two renal Na+/glucose cotransporters. Biochim Biophys Acta. 1992 Apr 29;1106(1):216–220. doi: 10.1016/0005-2736(92)90241-d. [DOI] [PubMed] [Google Scholar]
  19. Renfro J. L., Clark N. B., Metts R. E., Lynch M. A. Glucocorticoid inhibition of Na-SO4 transport by chick renal brush-border membranes. Am J Physiol. 1989 Jun;256(6 Pt 2):R1176–R1183. doi: 10.1152/ajpregu.1989.256.6.R1176. [DOI] [PubMed] [Google Scholar]
  20. Schneider E. G., Durham J. C., Sacktor B. Sodium-dependent transport of inorganic sulfate by rabbit renal brush-border membrane vesicles. Effects of other ions. J Biol Chem. 1984 Dec 10;259(23):14591–14599. [PubMed] [Google Scholar]
  21. Short J. M., Fernandez J. M., Sorge J. A., Huse W. D. Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res. 1988 Aug 11;16(15):7583–7600. doi: 10.1093/nar/16.15.7583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tallgren L. G. Inorganic sulphates in relation to the serum thyroxine level and in renal failure. Acta Med Scand Suppl. 1980;640:1–100. [PubMed] [Google Scholar]
  23. Tenenhouse H. S., Lee J., Harvey N. Renal brush-border membrane Na(+)-sulfate cotransport: stimulation by thyroid hormone. Am J Physiol. 1991 Sep;261(3 Pt 2):F420–F426. doi: 10.1152/ajprenal.1991.261.3.F420. [DOI] [PubMed] [Google Scholar]
  24. Turner R. J. Sodium-dependent sulfate transport in renal outer cortical brush border membrane vesicles. Am J Physiol. 1984 Nov;247(5 Pt 2):F793–F798. doi: 10.1152/ajprenal.1984.247.5.F793. [DOI] [PubMed] [Google Scholar]
  25. Werner A., Biber J., Forgo J., Palacin M., Murer H. Expression of renal transport systems for inorganic phosphate and sulfate in Xenopus laevis oocytes. J Biol Chem. 1990 Jul 25;265(21):12331–12336. [PubMed] [Google Scholar]
  26. Werner A., Moore M. L., Mantei N., Biber J., Semenza G., Murer H. Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9608–9612. doi: 10.1073/pnas.88.21.9608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wright E. M., Hager K. M., Turk E. Sodium cotransport proteins. Curr Opin Cell Biol. 1992 Aug;4(4):696–702. doi: 10.1016/0955-0674(92)90091-p. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES