Abstract
The signal encoded by a sensory neuron is usually characterized as the cell's average response to repeated presentations of a stimulus. However, each stimulus presentation elicits a slightly different response. This response variability may obscure the signal represented by neural activity, but it might also be an important aspect of a neuron's message and in some instances may even serve useful function. Here we present evidence that response variability (noise) in primate retinal ganglion cells at photopic light levels is (i) independent of the amplitude of either the stimulus or the response and is therefore additive, (ii) independent of receptive field size and retinal eccentricity, and (iii) similar for all primate ganglion cells. Our results show that the primate retina maintains a uniform noise level across the entire visual field and suggest that the noise originates within the ganglion cells themselves.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dacey D. M., Brace S. A coupled network for parasol but not midget ganglion cells in the primate retina. Vis Neurosci. 1992 Sep-Oct;9(3-4):279–290. doi: 10.1017/s0952523800010695. [DOI] [PubMed] [Google Scholar]
- Enroth-Cugell C., Robson J. G. The contrast sensitivity of retinal ganglion cells of the cat. J Physiol. 1966 Dec;187(3):517–552. doi: 10.1113/jphysiol.1966.sp008107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frishman L. J., Levine M. W. Statistics of the maintained discharge of cat retinal ganglion cells. J Physiol. 1983 Jun;339:475–494. doi: 10.1113/jphysiol.1983.sp014728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine M. W., Saleh E. J., Yarnold P. R. Statistical properties of the maintained discharge of chemically isolated ganglion cells in goldfish retina. Vis Neurosci. 1988;1(1):31–46. doi: 10.1017/s0952523800001000. [DOI] [PubMed] [Google Scholar]
- Linsenmeier R. A., Frishman L. J., Jakiela H. G., Enroth-Cugell C. Receptive field properties of x and y cells in the cat retina derived from contrast sensitivity measurements. Vision Res. 1982;22(9):1173–1183. doi: 10.1016/0042-6989(82)90082-7. [DOI] [PubMed] [Google Scholar]
- Mastronarde D. N. Interactions between ganglion cells in cat retina. J Neurophysiol. 1983 Feb;49(2):350–365. doi: 10.1152/jn.1983.49.2.350. [DOI] [PubMed] [Google Scholar]
- Rodieck R. W. Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Res. 1965 Dec;5(11):583–601. doi: 10.1016/0042-6989(65)90033-7. [DOI] [PubMed] [Google Scholar]
- Sakai H. M., Naka K. I. Dissection of the neuron network in the catfish inner retina. IV. Bidirectional interactions between amacrine and ganglion cells. J Neurophysiol. 1990 Jan;63(1):105–119. doi: 10.1152/jn.1990.63.1.105. [DOI] [PubMed] [Google Scholar]
- Sakai H. M., Naka K. Dissection of the neuron network in the catfish inner retina. I. Transmission to ganglion cells. J Neurophysiol. 1988 Nov;60(5):1549–1567. doi: 10.1152/jn.1988.60.5.1549. [DOI] [PubMed] [Google Scholar]
- Sakai H. M., Naka K. Dissection of the neuron network in the catfish inner retina. II. Interactions between ganglion cells. J Neurophysiol. 1988 Nov;60(5):1568–1583. doi: 10.1152/jn.1988.60.5.1568. [DOI] [PubMed] [Google Scholar]
- Schellart N. A., Spekreijse H. Origin of the stochastic nature of ganglion cell activity in isolated goldfish retina. Vision Res. 1973 Feb;13(2):337–345. doi: 10.1016/0042-6989(73)90111-9. [DOI] [PubMed] [Google Scholar]
- Tolhurst D. J., Movshon J. A., Thompson I. D. The dependence of response amplitude and variance of cat visual cortical neurones on stimulus contrast. Exp Brain Res. 1981;41(3-4):414–419. doi: 10.1007/BF00238900. [DOI] [PubMed] [Google Scholar]
- Troy J. B., Robson J. G. Steady discharges of X and Y retinal ganglion cells of cat under photopic illuminance. Vis Neurosci. 1992 Dec;9(6):535–553. doi: 10.1017/s0952523800001784. [DOI] [PubMed] [Google Scholar]
- Tsukamoto Y., Masarachia P., Schein S. J., Sterling P. Gap junctions between the pedicles of macaque foveal cones. Vision Res. 1992 Oct;32(10):1809–1815. doi: 10.1016/0042-6989(92)90042-h. [DOI] [PubMed] [Google Scholar]
- Tsukamoto Y., Smith R. G., Sterling P. "Collective coding" of correlated cone signals in the retinal ganglion cell. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1860–1864. doi: 10.1073/pnas.87.5.1860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsukamoto Y., Sterling P. Spatial summation by ganglion cells: some consequences for the efficient encoding of natural scenes. Neurosci Res Suppl. 1991;15:S185–S198. [PubMed] [Google Scholar]
- Vaney D. I. Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin. Neurosci Lett. 1991 Apr 29;125(2):187–190. doi: 10.1016/0304-3940(91)90024-n. [DOI] [PubMed] [Google Scholar]
- Watanabe M., Rodieck R. W. Parasol and midget ganglion cells of the primate retina. J Comp Neurol. 1989 Nov 15;289(3):434–454. doi: 10.1002/cne.902890308. [DOI] [PubMed] [Google Scholar]