Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Sep 1;90(17):8164–8168. doi: 10.1073/pnas.90.17.8164

PMT1, the gene for a key enzyme of protein O-glycosylation in Saccharomyces cerevisiae.

S Strahl-Bolsinger 1, T Immervoll 1, R Deutzmann 1, W Tanner 1
PMCID: PMC47309  PMID: 8367478

Abstract

The integral endoplasmic reticulum membrane protein catalyzing the initial reaction of protein O-glycosylation in Saccharomyces cerevisiae has been purified to homogeneity. The 92-kDa N-glycosylated protein transfers mannose residues from dolichyl phosphate-D-mannose to specific serine/threonine residues of proteins entering the secretory pathway. This type of mannosyl transfer reaction has so far been observed only in fungal cells. Oligonucleotides derived from peptide sequences of the transferase were used to screen a genomic yeast library. A clone was isolated which contains an open reading frame of 2451 bp corresponding to an mRNA transcript of 3 kb. The predicted protein consists of 817 amino acids including three potential N-glycosylation sites. The hydropathy plot indicates a tripartite structure of the protein: an amino-terminal third and a carboxyl-terminal third, both with multiple potential transmembrane helices, and a central hydrophilic part. Expression of the clone in Escherichia coli resulted in mannosyltransferase activity. Gene disruption led to a complete loss of in vitro mannosyltransferase activity from dolichyl phosphate-D-mannose to a peptide used as acceptor in the enzymatic assay. In vivo it was observed, however, that protein O-mannosylation in the disruptant had decreased only to about 40-50%, indicating the existence of an additional transferase which had not been measured by the in vitro enzyme assay.

Full text

PDF
8168

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babczinski P. Evidence against the participation of lipid intermediates in the in vitro biosynthesis of serine(threonine)-N-acetyl-D-galactosamine linkages in submaxillary mucin. FEBS Lett. 1980 Aug 11;117(1):207–211. doi: 10.1016/0014-5793(80)80946-x. [DOI] [PubMed] [Google Scholar]
  2. Babczinski P., Tanner W. Involvement of dolicholmonophosphate in the formation of specific mannosyl-linkages in yeast glycoproteins. Biochem Biophys Res Commun. 1973 Oct 1;54(3):1119–1124. doi: 10.1016/0006-291x(73)90808-5. [DOI] [PubMed] [Google Scholar]
  3. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bretthauer R. K., Wu S. Synthesis of the mannosyl-O-serine (threonine) linkage of glycoproteins from polyisoprenylphosphate mannose in yeast (Hansenula holstii). Arch Biochem Biophys. 1975 Mar;167(1):151–160. doi: 10.1016/0003-9861(75)90451-8. [DOI] [PubMed] [Google Scholar]
  5. Chapman A., Fujimoto K., Kornfeld S. The primary glycosylation defect in class E Thy-1-negative mutant mouse lymphoma cells is an inability to synthesize dolichol-P-mannose. J Biol Chem. 1980 May 25;255(10):4441–4446. [PubMed] [Google Scholar]
  6. Domdey H., Apostol B., Lin R. J., Newman A., Brody E., Abelson J. Lariat structures are in vivo intermediates in yeast pre-mRNA splicing. Cell. 1984 Dec;39(3 Pt 2):611–621. doi: 10.1016/0092-8674(84)90468-9. [DOI] [PubMed] [Google Scholar]
  7. Emr S. D., Schekman R., Flessel M. C., Thorner J. An MF alpha 1-SUC2 (alpha-factor-invertase) gene fusion for study of protein localization and gene expression in yeast. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7080–7084. doi: 10.1073/pnas.80.23.7080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ernst J. F., Mermod J. J., Richman L. H. Site-specific O-glycosylation of human granulocyte/macrophage colony-stimulating factor secreted by yeast and animal cells. Eur J Biochem. 1992 Feb 1;203(3):663–667. doi: 10.1111/j.1432-1033.1992.tb16596.x. [DOI] [PubMed] [Google Scholar]
  9. Fink G. R., Styles C. A. Curing of a killer factor in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2846–2849. doi: 10.1073/pnas.69.10.2846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Finne J., Krusius T., Margolis R. K., Margolis R. U. Novel mannitol-containing oligosaccharides obtained by mild alkaline borohydride treatment of a chondroitin sulfate proteoglycan from brain. J Biol Chem. 1979 Oct 25;254(20):10295–10300. [PubMed] [Google Scholar]
  11. Gellerfors P., Axelsson K., Helander A., Johansson S., Kenne L., Lindqvist S., Pavlu B., Skottner A., Fryklund L. Isolation and characterization of a glycosylated form of human insulin-like growth factor I produced in Saccharomyces cerevisiae. J Biol Chem. 1989 Jul 5;264(19):11444–11449. [PubMed] [Google Scholar]
  12. Gold M. H., Hahn H. J. Role of mannosyl lipid intermediate in the synthesis of Neurospora crassa glycoproteins. Biochemistry. 1976 May 4;15(9):1808–1814. doi: 10.1021/bi00654a004. [DOI] [PubMed] [Google Scholar]
  13. Grunstein M., Hogness D. S. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3961–3965. doi: 10.1073/pnas.72.10.3961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Haselbeck A. Purification of GDP mannose:dolichyl-phosphate O-beta-D-mannosyltransferase from Saccharomyces cerevisiae. Eur J Biochem. 1989 May 15;181(3):663–668. doi: 10.1111/j.1432-1033.1989.tb14774.x. [DOI] [PubMed] [Google Scholar]
  15. Haselbeck A., Tanner W. Dolichyl phosphate-mediated mannosyl transfer through liposomal membranes. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1520–1524. doi: 10.1073/pnas.79.5.1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Haselbeck A., Tanner W. O-glycosylation in Saccharomyces cerevisiae is initiated at the endoplasmic reticulum. FEBS Lett. 1983 Jul 25;158(2):335–338. doi: 10.1016/0014-5793(83)80608-5. [DOI] [PubMed] [Google Scholar]
  17. Hill K., Boone C., Goebl M., Puccia R., Sdicu A. M., Bussey H. Yeast KRE2 defines a new gene family encoding probable secretory proteins, and is required for the correct N-glycosylation of proteins. Genetics. 1992 Feb;130(2):273–283. doi: 10.1093/genetics/130.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Häusler A., Ballou L., Ballou C. E., Robbins P. W. Yeast glycoprotein biosynthesis: MNT1 encodes an alpha-1,2-mannosyltransferase involved in O-glycosylation. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6846–6850. doi: 10.1073/pnas.89.15.6846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jackson M. R., Nilsson T., Peterson P. A. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J. 1990 Oct;9(10):3153–3162. doi: 10.1002/j.1460-2075.1990.tb07513.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Julius D., Brake A., Blair L., Kunisawa R., Thorner J. Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-alpha-factor. Cell. 1984 Jul;37(3):1075–1089. doi: 10.1016/0092-8674(84)90442-2. [DOI] [PubMed] [Google Scholar]
  21. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  22. Krusius T., Reinhold V. N., Margolis R. K., Margolis R. U. Structural studies on sialylated and sulphated O-glycosidic mannose-linked oligosaccharides in the chondroitin sulphate proteoglycan of brain. Biochem J. 1987 Jul 1;245(1):229–234. doi: 10.1042/bj2450229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kukuruzinska M. A., Bergh M. L., Jackson B. J. Protein glycosylation in yeast. Annu Rev Biochem. 1987;56:915–944. doi: 10.1146/annurev.bi.56.070187.004411. [DOI] [PubMed] [Google Scholar]
  24. Kuranda M. J., Robbins P. W. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J Biol Chem. 1991 Oct 15;266(29):19758–19767. [PubMed] [Google Scholar]
  25. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  26. LURIA S. E., ADAMS J. N., TING R. C. Transduction of lactose-utilizing ability among strains of E. coli and S. dysenteriae and the properties of the transducing phage particles. Virology. 1960 Nov;12:348–390. doi: 10.1016/0042-6822(60)90161-6. [DOI] [PubMed] [Google Scholar]
  27. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  28. Larriba G., Elorza M. V., Villanueva J. R., Sentandreu R. Participation of dolichol phospho-mannose in the glycosylation of yeast wall manno-proteins at the polysomal level. FEBS Lett. 1976 Dec 1;71(2):316–320. doi: 10.1016/0014-5793(76)80960-x. [DOI] [PubMed] [Google Scholar]
  29. Lehle L., Tanner W. Membrane-bound mannosyl transferase in yeast glycoprotein biosynthesis. Biochim Biophys Acta. 1974 May 20;350(1):225–235. doi: 10.1016/0005-2744(74)90220-4. [DOI] [PubMed] [Google Scholar]
  30. Letoublon R., Got R. Rôle d'un intermédiaire lipidique le transfert du mannose à des accepteurs glycoprotéiques endogénes chez Aspergillus niger. FEBS Lett. 1974 Sep 15;46(1):214–217. doi: 10.1016/0014-5793(74)80371-6. [DOI] [PubMed] [Google Scholar]
  31. Lorenz C., Strahl-Bolsinger S., Ernst J. F. Specific in vitro O-glycosylation of human granulocyte-macrophage colony-stimulating-factor-derived peptides by O-glycosyltransferases of yeast and rat liver cells. Eur J Biochem. 1992 May 1;205(3):1163–1167. doi: 10.1111/j.1432-1033.1992.tb16886.x. [DOI] [PubMed] [Google Scholar]
  32. Marriott M., Tanner W. Localization of dolichyl phosphate- and pyrophosphate-dependent glycosyl transfer reactions in Saccharomyces cerevisiae. J Bacteriol. 1979 Aug;139(2):566–572. doi: 10.1128/jb.139.2.566-572.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Menon A. K., Mayor S., Schwarz R. T. Biosynthesis of glycosyl-phosphatidylinositol lipids in Trypanosoma brucei: involvement of mannosyl-phosphoryldolichol as the mannose donor. EMBO J. 1990 Dec;9(13):4249–4258. doi: 10.1002/j.1460-2075.1990.tb07873.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Orlean P., Albright C., Robbins P. W. Cloning and sequencing of the yeast gene for dolichol phosphate mannose synthase, an essential protein. J Biol Chem. 1988 Nov 25;263(33):17499–17507. [PubMed] [Google Scholar]
  35. Orlean P., Ammer H., Watzele M., Tanner W. Synthesis of an O-glycosylated cell surface protein induced in yeast by alpha factor. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6263–6266. doi: 10.1073/pnas.83.17.6263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Orlean P. Dolichol phosphate mannose synthase is required in vivo for glycosyl phosphatidylinositol membrane anchoring, O mannosylation, and N glycosylation of protein in Saccharomyces cerevisiae. Mol Cell Biol. 1990 Nov;10(11):5796–5805. doi: 10.1128/mcb.10.11.5796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Roberts T. M., Lauer G. D. Maximizing gene expression on a plasmid using recombination in vitro. Methods Enzymol. 1979;68:473–482. doi: 10.1016/0076-6879(79)68036-9. [DOI] [PubMed] [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sengstag C., Hinnen A. The sequence of the Saccharomyces cerevisiae gene PHO2 codes for a regulatory protein with unusual aminoacid composition. Nucleic Acids Res. 1987 Jan 12;15(1):233–246. doi: 10.1093/nar/15.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sharma C. B., Babczinski P., Lehle L., Tanner W. The role of dolicholmonophosphate in glycoprotein biosynthesis in Saccharomyces cerevisiae. Eur J Biochem. 1974 Jul 1;46(1):35–41. doi: 10.1111/j.1432-1033.1974.tb03594.x. [DOI] [PubMed] [Google Scholar]
  41. Sharma C. B., D'Souza C., Elbein A. D. Partial purification of a mannosyltransferase involved in the O-mannosylation of glycoproteins from Saccharomyces cerevisiae. Glycobiology. 1991 Sep;1(4):367–373. doi: 10.1093/glycob/1.4.367. [DOI] [PubMed] [Google Scholar]
  42. Soliday C. L., Kolattukudy P. E. Introduction of O-glycosidically linked mannose into proteins via mannosyl phosphoryl dolichol by microsomes from Fusarium soani f. pisi. Arch Biochem Biophys. 1979 Oct 15;197(2):367–378. doi: 10.1016/0003-9861(79)90258-3. [DOI] [PubMed] [Google Scholar]
  43. Strahl-Bolsinger S., Tanner W. Protein O-glycosylation in Saccharomyces cerevisiae. Purification and characterization of the dolichyl-phosphate-D-mannose-protein O-D-mannosyltransferase. Eur J Biochem. 1991 Feb 26;196(1):185–190. doi: 10.1111/j.1432-1033.1991.tb15802.x. [DOI] [PubMed] [Google Scholar]
  44. Sweet D. J., Pelham H. R. The Saccharomyces cerevisiae SEC20 gene encodes a membrane glycoprotein which is sorted by the HDEL retrieval system. EMBO J. 1992 Feb;11(2):423–432. doi: 10.1002/j.1460-2075.1992.tb05071.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tanner W., Lehle L. Protein glycosylation in yeast. Biochim Biophys Acta. 1987 Apr 27;906(1):81–99. doi: 10.1016/0304-4157(87)90006-2. [DOI] [PubMed] [Google Scholar]
  46. Watzele M., Klis F., Tanner W. Purification and characterization of the inducible a agglutinin of Saccharomyces cerevisiae. EMBO J. 1988 May;7(5):1483–1488. doi: 10.1002/j.1460-2075.1988.tb02966.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES