Abstract
Relativistic Weyl fermion (WF) often appears in the band structure of three dimensional magnetic materials and acts as a source or sink of the Berry curvature, i.e., the (anti-)monopole. It has been believed that the WFs are stable due to their topological indices except when two Weyl fermions of opposite chiralities annihilate pairwise. Here, we theoretically show for a model including the electron-electron interaction that the Mott gap opens for each WF without violating the topological stability, leading to a topological Mott insulator dubbed Weyl Mott insulator (WMI). This WMI is characterized by several novel features such as (i) energy gaps in the angle-resolved photo-emission spectroscopy (ARPES) and the optical conductivity, (ii) the nonvanishing Hall conductance, and (iii) the Fermi arc on the surface with the penetration depth diverging as approaching to the momentum at which the Weyl point is projected. Experimental detection of the WMI by distinguishing from conventional Mott insulators is discussed with possible relevance to pyrochlore iridates.
Weyl fermions (WFs) in solids attract recent intensive interests from the viewpoint of their novel quantum transport properties and chiral anomaly. The WF is described by the 2-component spinors originating from 4-component Dirac spinor when the mass m is zero in the Dirac equation. The realization of WFs in condensed matters has been recently established1,2,3. In magnetic materials, the time-reversal symmetry is broken and the energy dispersion of Bloch wavefunction has no Kramer’s degeneracy. In this case, the band crossings between the two bands are described by a 2 × 2 Hamiltonian as
with 2 × 2 Pauli matrices σi (i = 1, 2, 3). Three conditions of the band crossing hi(k) = 0 for (i = 1, 2, 3) can be satisfied in general by appropriately choosing the three components of the crystal momentum k. Weyl points sometimes exist exactly at the Fermi energy when dictated by some symmetry and topology of the Bloch wavefunctions, for example, in Dirac semimetals4,5,6,7,8. More recently, experimental discovery of Weyl semimetals in an inversion broken material TaAs has been reported9,10,11.
Weyl fermion plays an important role in the context of the Berry phase, which is defined by : the periodic part of the Bloch wave function with the band index n = ± and the momentum k) and acts as the vector potential in the momentum space. The Berry curvature bnk = ∇k × ank is the emergent magnetic field, and can be enhanced near the band crossing points. When one expand Eq. (1) around the band crossing point (Weyl point, which we assume to be k0 = 0), there appears the WF described with hi(k) = ηvFki, by an appropriate choice of the coordinate ki’s, where vF is the Fermi velocity. The sign η = ±1 specifies the chirality of the WF, and the Berry curvature of the lower eigenstates (n = −) of the Hamiltonian in Eq. (1) is obtained as
which diverges as |k| → 0 and the total flux Φ penetrating the surface S enclosing the Weyl point is given by . This indicates that the WF acts as the magnetic monopole (anti-monopole) for η = 1 (η = −1); the magnetic charge plays a role of topological index. Strong Berry curvature leads to the enhanced anomalous Hall effect1 as well as the chiral magnetic effect which results in the negative magneto-resistance12.
Figure 1 shows the schematic figure of the three dimensional first Brillouin zone in which two WFs exist along the kz direction. One can define the Chern number
for the plane of fixed kz. When we consider Ch(kz) as a function of kz, there appears the jump by η at kz = ±k0z, i.e., kz-coordinate of the Weyl points. Therefore, due to the periodicity of Ch(kz) by kz → kz + 2π/c, we need the pair of η = 1 and −113,14. The existence of a single (an odd number of) WF is also excluded. Therefore, the annihilation of a single WF is prohibited, i.e., the only way to destroy the WFs is to annihilate a pair of WFs with opposite chiralities either by making the two WFs approach to each other in the momentum space or by introducing a scattering between two WFs with some density-wave-type order. The former scenario is actually proposed for the transition between the Weyl metal and insulator in pyrochlore compounds15. The latter one is also discussed intensively16,17. Meanwhile, effects of the electron correlation have been discussed for WFs by several methods including random phase approximation18 and, more recently, cluster perturbation theory19. However, the possibility of the Mott gap opening at each WF has never been explored thus far to the best of the present authors’ knowledge.
In this paper, we study the effect of the electron correlation U on WFs by using a simple model which is exactly solvable. It is shown that the Mott gap due to U open at each WF without the pair annihilation, while the topological properties are kept unchanged. Namely, the magnetic charge of the WF is unchanged with the role of poles in Green’s function being replaced by its zeros. The Hall conductance σxy remains nonvanishing and the Fermi arc on the surface remains, while the Green’s function and the optical conductivity σxx(ω) show the gap. Therefore, this Mott insulating state is identified as a topological Mott insulator, and we name it “Weyl Mott Insulator (WMI)”. The experimental detection of this new state is also discussed.
Results
Model and Green’s function
The model we study is given by the Hamiltonian
where ψk = (ck,↑, ck,↓)T is the two-component spinor, and . The most peculiar nature of this model arises from the electron-electron interaction which is local in k, i.e., the Hamiltonian is decomposed into independent k-sectors. In the real space, this corresponds to the non-local interaction in the limit of forward scattering. A similar idea has been explored to study the Mott transition20 and the spin-charge separation21. This locality of the interaction in k enables the exact solution of this problem. One can introduce the unitary transformation U(k) satisfying U(k)†[h(k) ⋅ σ]U(k) = σ3h(k) with h(k) = |h(k)| and a new spinor ϕk = U(k)†ψk = (ak+, ak−)T, and then obtain
with and nk = nk+ + nk−. There are four eigenstates and eigenenergies: (i) with , (ii) with E = h(k), (iii) with E = −h(k), and (iv) with .
Using these solutions, one can easily obtain the thermal Green’s function in the zero temperature limit as
where heff(k) = n(k)[h(k) + U/2] with n(k) = h(k)/h(k). (For details, see Supplementary Information SI.) As can be seen from Eq. (6), the energy dispersions of the poles are ε±(k) = ±h(k) + U/2, where the Mott gap of U exists even at the Weyl point with h(k) = 0 as shown in Fig. 2(a), which can be measured in the angle-resolved photoemission spectroscopy (ARPES). It should be noticed that Eq. (6) is derived from the exact Green’s function and is not a result of some mean-field approximation. Thus, the WFs disappear due to the electron correlation without the pair annihilation.
Topological properties
The topological index for the interacting electronic systems can be defined in terms of Green’s function22. For the (2 + 1)D case, it is given by
where α, β, γ run over 0, 1, 2, and εαβγ is the totally antisymmetric tensor. Plugging Eq. (6) into Eq. (7), one obtains
where the k-integral is over kx and ky for fixed kz. Since n(k) = heff(k)/|heff(k)| = h(k)/|h(k)|, Ch(kz) does not change in spite of the gap opening at Weyl points. The Green’s function in Eq. (6) depends on the direction in which k approaches to the Weyl point k0 and still plays a role of a source (sink) of the Berry curvature. At exactly k0, has a zero at ω = 0 when one averages over the direction of . Namely, the role of a pole is replaced by a zero in the topological properties of Green’s function22. Because of the bulk-edge correspondence, nonzero topological index Ch(kz) indicates that the existence of the surface states on the side surface, i.e., the Fermi arc. (For details, see Supplementary Information SII.)
Therefore, the present insulating state is topological and we call it “Weyl Mott insulator (WMI)” distinct from the usual antiferromagnetic Mott insulator (AFI).
Optical conductivity
Now we study the conductivity, which is given by the two-particle correlation function. We consider a single WF with the Fermi velocity vF described by h(k) = vFk. It is crucial to distinguish between the nonzero momentum transfer q and exactly q = 0. In the former case, the double occupancy of the electrons will be created, while not in the latter case, which brings about the singularity or discontinuity at q = 0. This reflects the long-range nature of our Coulomb interaction in Eq. (4). For q ≠ 0, the particle-hole continuum starts from ω = U + vF|q| for the transition of an electron from k to k + q.
For the optical conductivity, the momentum of the incident light q is finite although small, and hence we take the limit q → 0. In this limit, the optical conductivity at zero temperature for a single WF is obtained as (See Supplementary Information SIII for details)
where θ(x) = 1(x ≥ 0) and θ(x) = 0(x < 0). The optical conductivity shows a Mott gap of U and its asymptotic behavior for large ω is given by which coincides with the well known result for a free WF23. In Fig. 3, the optical conductivity is plotted for various temperatures (See Supplementary Information SIII for the derivation). As the temperature increases, peaks at ω = 0 and ω = U appear, as denoted by bars whose heights represent mutual ratios of the weights of the peaks. The peak at ω = 0 is a Drude peak for finite temperatures, while the peak at ω = U arises from an intraband contribution in which a WF at k scattered to k + q within the same band feels a Coulomb repulsion U. The appearance of the peak at ω = U in σ(ω) for WMIs contrasts to the absence of such a peak for AFIs, because the peak at ω = U originates from the correlation effect. In addition, the appearance of the in-gap absorption indicates the fragile nature of the Mott gap compared with the single-particle band gap.
For the case of exactly q = 0, only the vertical transitions within the same k-sector contribute to the conductivity as indicated by the red line in Fig. 2(b). Since no double occupancy is created in this case, no energy cost of U occurs. Therefore, the conductivity σ(q = 0, ω) is given by Eq. (9) with U = 0.
Discussions
Now the relevance of the present results to realistic systems is discussed. There are clear differences between the WMI and the AFI due to their topological nature: (i) The Hall conductance is finite in WMI while it is zero in AFI. (ii) Correspondingly, the Fermi arc on the surface remains in WMI while not in AFI. Also importantly, the phase transition between the WMI and AFI is possible once the former exists as explained below. Figure 4(a) shows the phase diagram of the present model. The horizontal axis is the separation Δkz between the two WFs which is controlled by, e.g., the strength of the antiferromagnetic long range order parameter M. When U = 0, the phase transition occurs from the Weyl semimetal to the AFI by the pair annihilation of WFs at M = Mc. Once the interaction U is switched on, we always opens the gap and the system becomes the WMI as long as Δkz is finite. Along the phase transition line Δkz = 0 at M = Mc, U > 0, the pair annihilation of the two zeros of the Green’s function occurs, which is distinct from that at U = 0 where the two poles collide and pair-annihilate. Here one must consider the peculiarity of the present model. The effect of the long range Coulomb interactions is marginally irrelevant as in the case of quantum electrodynamics (QED)24. As for the short-range Coulomb interaction U, it is irrelevant. This means that there must be a finite range of Coulomb interaction within which the WFs remains gapless and stable. On the other hand, the strong U limit in the lattice model corresponds to the localized electron and hence a trivial AFI. Therefore, the conjectured phase diagram of a more realistic model is given in Fig. 4(b), where the successive transitions from the Weyl semimetal to the WMI, and from the WMI to the AFI occurs as the strength of the interaction increases. (The separation of two WFs is reduced also as the interaction increases and hence the trajectory should goes as U and M simultaneously increase.)
Now we discuss the Green’s function and the two-particle correlation function for realistic electron-electron interactions given by
The self-energy Σ(k = 0, ω) of the Green’s function in the second order in V(q) is given in Supplementary Information SIV. It is concluded that the gap of the spectral function is stable and remains nonzero. The two-particle correlation functions such as σ(q, ω), on the other hand, is gapless at q = 0 for the Hamiltonian in Eq. (4). For a finite size system of N sites, the number of poles forming this gapless excitation in the two particle correlation function [the red line in Fig. 2(b)] is of O(N) (which is the number of k where the excitation can be created). In general, the number of poles for a collective excitation is of O(N), while that of a continuous excitation arising as a pair of single-particle excitations is of O(N2). This infers that the gapless excitations at q = 0 corresponds to a collective excitation. For realistic interactions, the discontinuity at q = 0 should be removed. In this case, we conjecture that the vertical transition [red line in the inset of Fig. 4(a)] turns into a collective mode with a linear dispersion as shown in the blue line in the inset in the WMI phase of Fig. 4(b).
These considerations offer a different scenario to interpret the phase diagram of pyrochlore iridates R2Ir2O73,15. As the radius of the rare-earth ion R is reduced, the correlation strength increases. A recent optical measurement in Nd2Ir2O7 has revealed the opening of the Mott gap of the order of 0.05 eV25. A transport experiment also discovered the metallic domain wall states even in the Mott insulating state, i.e., the bulk is insulating while the domain wall is metallic26. As the correlation is further reduced, these surface metallic states also disappear. One scenario is proposed by Yamaji et al.27 based on the mean field theory. As an alternative scenario, one can consider the two types of Mott insulators, i.e., the WMI and the AFI, and the disappearance of the metallic domain wall states signals the phase transition between the two phases. Namely, since two domains of the antiferromagnetic order correspond to opposite signs of σxy and hence the two-dimensional chiral surface modes are expected to appear at the domain boundary in the WMI phase. However, we note that this requires a symmetry lowering to violate the cancellation of the Chern vectors pointing toward four momentum directions equivalent to (1, 1, 1) which makes σxy zero in the cubic symmetric case28. The smoking-gun experiment for the WMI should be the ARPES to detect the Fermi arc even in the Mott insulating phase as mentioned above.
Additional Information
How to cite this article: Morimoto, T. and Nagaosa, N. Weyl Mott Insulator. Sci. Rep. 6, 19853; doi: 10.1038/srep19853 (2016).
Supplementary Material
Acknowledgments
We thank Y. Tokura, B.-J. Yang, L. Balents, L. Fu, and W. Witczak-Krempa for fruitful discussions. This work was supported by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), and by Grant-in-Aid for Scientific Research (No. 24224009 and No. 26103006) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and from Japan Society for the Promotion of Science.
Footnotes
Author Contributions T.M. and N.N. performed the analytic calculations and wrote the main manuscript text. All authors reviewed the manuscript.
References
- Fang Z. et al. The Anomalous Hall Effect and Magnetic Monopoles in Momentum Space. Science 302, 92–95 (2003). [DOI] [PubMed] [Google Scholar]
- Murakami S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys. 9, 356 (2007). [Google Scholar]
- Wan X., Turner A. M., Vishwanath A. & Savrasov S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011). [Google Scholar]
- Young S. M. et al. Dirac Semimetal in Three Dimensions. Phys. Rev. Lett. 108, 140405 (2012). [DOI] [PubMed] [Google Scholar]
- Liu Z. K. et al. Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi. Science 343, 864–867 (2014). [DOI] [PubMed] [Google Scholar]
- Xu S.-Y. et al. Observation of a bulk 3D Dirac multiplet, Lifshitz transition, and nestled spin states in Na3Bi. arXiv:1312.7624 (2013).
- Neupane M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat. Commun. 5, 4786 (2014). [DOI] [PubMed] [Google Scholar]
- Borisenko S. et al. Experimental Realization of a Three-Dimensional Dirac Semimetal. Phys. Rev. Lett. 113, 027603 (2014). [DOI] [PubMed] [Google Scholar]
- Huang X. et al. Observation of the chiral anomaly induced negative magneto-resistance in 3D Weyl semi-metal TaAs. arXiv:1503.01304 (2015).
- Xu S.-Y. et al. Discovery of a Weyl Fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015). [DOI] [PubMed] [Google Scholar]
- Lv B. Q. et al. Observation of Weyl nodes in TaAs. Nature Physics 11, 724–727 (2015). [Google Scholar]
- Burkov A. A. Chiral anomaly and transport in Weyl metals. J. Phys.: Condens. Matter 27, 113201 (2015). [DOI] [PubMed] [Google Scholar]
- Nielsen H. B. & Ninomiya M. Absence of neutrinos on a lattice:(I). Proof by homotopy theory. Nucl. Phys. B 185, 20–40 (1981). [Google Scholar]
- Nielsen H. B. & Ninomiya M. Absence of neutrinos on a lattice:(II). intuitive topological proof. Nucl. Phys. B 193, 173–194 (1981). [Google Scholar]
- Witczak-Krempa W. & Kim Y. B. Topological and magnetic phases of interacting electrons in the pyrochlore iridates. Phys. Rev. B 85, 045124 (2012). [Google Scholar]
- Maciejko J. & Nandkishore R. Weyl semimetals with short-range interactions. Phys. Rev. B 90, 035126 (2014). [Google Scholar]
- Sekine A. & Nomura K. Weyl Semimetal in the Strong Coulomb Interaction Limit. J. Phys. Soc. Jpn. 83, 094710 (2014). [Google Scholar]
- Abrikosov A. & Beneslavskii S. Possible existence of substances intermediate between metals and dielectrics. JETP 32, 699 (1971). [Google Scholar]
- Witczak-Krempa W., Knap M. & Abanin D. Interacting weyl semimetals: Characterization via the topological hamiltonian and its breakdown. Phys. Rev. Lett. 113, 136402 (2014). [DOI] [PubMed] [Google Scholar]
- Hatsugai Y. & Kohmoto M. Exactly Solvable Model of Correlated Lattice Electrons in Any Dimensions. J. Phys. Soc. Jpn. 61, 2056–2069 (1992). [Google Scholar]
- Baskaran G. An exactly solvable fermion model: Spinons, holons and a non-fermi liquid phase. Mod. Phys. Lett. B 05, 643–649 (1991). [Google Scholar]
- Gurarie V. Single-particle Green’s functions and interacting topological insulators. Phys. Rev. B 83, 085426 (2011). [Google Scholar]
- Hosur P., Parameswaran S. A. & Vishwanath A. Charge Transport in Weyl Semimetals. Phys. Rev. Lett. 108, 046602 (2012). [DOI] [PubMed] [Google Scholar]
- Isobe H. & Nagaosa N. Theory of a quantum critical phenomenon in a topological insulator: (3 + 1)-dimensional quantum electrodynamics in solids. Phys. Rev. B 86, 165127 (2012). [Google Scholar]
- Ueda K. et al. Variation of Charge Dynamics in the Course of Metal-Insulator Transition for Pyrochlore-Type Nd2Ir2O7. Phys. Rev. Lett. 109, 136402 (2012). [DOI] [PubMed] [Google Scholar]
- Ueda K. et al. Anomalous domain-wall conductance in pyrochlore-type Nd2Ir2O7 on the verge of the metal-insulator transition. Phys. Rev. B 89, 075127 (2014). [Google Scholar]
- Yamaji Y. & Imada M. Metallic Interface Emerging at Magnetic Domain Wall of Antiferromagnetic Insulator: Fate of Extinct Weyl Electrons. Phys. Rev. X 4, 021035 (2014). [Google Scholar]
- Yang B.-J. & Nagaosa N. Emergent topological phenomena in thin films of pyrochlore iridates. Phys. Rev. Lett. 112, 246402 (2014). [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.