Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Sep 15;90(18):8509–8513. doi: 10.1073/pnas.90.18.8509

Positional cloning of the hereditary renal carcinoma 3;8 chromosome translocation breakpoint.

F L Boldog 1, R M Gemmill 1, C M Wilke 1, T W Glover 1, A S Nilsson 1, S C Chandrasekharappa 1, R S Brown 1, F P Li 1, H A Drabkin 1
PMCID: PMC47386  PMID: 7690964

Abstract

The chromosome (p14.2;q24.1) translocation t(3;8) has been associated with hereditary renal cancer in one family. Based on cytogenetic analyses and loss-of-heterozygosity experiments, the 3p14 region has been independently implicated as harboring a tumor suppressor gene critical to kidney and lung cancer development. The 3p14.2 region also contains FRA3B, the most sensitive fragile site induced by aphidicolin. A chromosome 3 probe, R7K145, derived from a radiation-reduced hybrid was positioned between the t(3;8) breakpoint and an aphidicolin-induced 3p14 breakpoint. A yeast artificial chromosome (YAC) contig containing R7K145 was developed that crossed the aphidicolin-induced breakpoint on its telomeric side. A subsequent chromosome walk identified a YAC that crossed the 3;8 translocation breakpoint. A lambda sublibrary allowed isolation of clones spanning the rearrangement. Unique and evolutionarily conserved DNA sequences were used to screen a kidney cDNA library. We have identified a gene, referred to as HRCA1 (hereditary renal cancer associated 1), that maps immediately adjacent to the breakpoint. On the basis of its chromosomal position, HRCA1 may be a candidate tumor suppressor gene.

Full text

PDF
8509

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertsen H. M., Abderrahim H., Cann H. M., Dausset J., Le Paslier D., Cohen D. Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4256–4260. doi: 10.1073/pnas.87.11.4256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ali I. U., Lidereau R., Callahan R. Presence of two members of c-erbA receptor gene family (c-erbA beta and c-erbA2) in smallest region of somatic homozygosity on chromosome 3p21-p25 in human breast carcinoma. J Natl Cancer Inst. 1989 Dec 6;81(23):1815–1820. doi: 10.1093/jnci/81.23.1815. [DOI] [PubMed] [Google Scholar]
  3. Amasino R. M. Acceleration of nucleic acid hybridization rate by polyethylene glycol. Anal Biochem. 1986 Feb 1;152(2):304–307. doi: 10.1016/0003-2697(86)90413-6. [DOI] [PubMed] [Google Scholar]
  4. Bretan P. N., Jr, Busch M. P., Hricak H., Williams R. D. Chronic renal failure: a significant risk factor in the development of acquired renal cysts and renal cell carcinoma. Case reports and review of the literature. Cancer. 1986 May 1;57(9):1871–1879. doi: 10.1002/1097-0142(19860501)57:9<1871::aid-cncr2820570929>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  5. Burke D. T., Carle G. F., Olson M. V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science. 1987 May 15;236(4803):806–812. doi: 10.1126/science.3033825. [DOI] [PubMed] [Google Scholar]
  6. Cohen A. J., Li F. P., Berg S., Marchetto D. J., Tsai S., Jacobs S. C., Brown R. S. Hereditary renal-cell carcinoma associated with a chromosomal translocation. N Engl J Med. 1979 Sep 13;301(11):592–595. doi: 10.1056/NEJM197909133011107. [DOI] [PubMed] [Google Scholar]
  7. Devilee P., van den Broek M., Kuipers-Dijkshoorn N., Kolluri R., Khan P. M., Pearson P. L., Cornelisse C. J. At least four different chromosomal regions are involved in loss of heterozygosity in human breast carcinoma. Genomics. 1989 Oct;5(3):554–560. doi: 10.1016/0888-7543(89)90023-2. [DOI] [PubMed] [Google Scholar]
  8. Drabkin H. A., Bradley C., Hart I., Bleskan J., Li F. P., Patterson D. Translocation of c-myc in the hereditary renal cell carcinoma associated with a t(3;8)(p14.2;q24.13) chromosomal translocation. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6980–6984. doi: 10.1073/pnas.82.20.6980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Drabkin H. A., Mendez M. J., Rabbitts P. H., Varkony T., Bergh J., Schlessinger J., Erickson P., Gemmill R. M. Characterization of the submicroscopic deletion in the small-cell lung carcinoma (SCLC) cell line U2020. Genes Chromosomes Cancer. 1992 Jul;5(1):67–74. doi: 10.1002/gcc.2870050110. [DOI] [PubMed] [Google Scholar]
  10. Drabkin H., Wright M., Jonsen M., Varkony T., Jones C., Sage M., Gold S., Morse H., Mendez M., Erickson P. Development of a somatic cell hybrid mapping panel and molecular probes for human chromosome 3. Genomics. 1990 Nov;8(3):435–446. doi: 10.1016/0888-7543(90)90029-t. [DOI] [PubMed] [Google Scholar]
  11. Gemmill R. M., Coyle-Morris J., Ware-Uribe L., Pearson N., Hecht F., Brown R. S., Li F. P., Drabkin H. A. A 1.5-megabase restriction map surrounding MYC does not include the translocation breakpoint in familial renal cell carcinoma. Genomics. 1989 Jan;4(1):28–35. doi: 10.1016/0888-7543(89)90310-8. [DOI] [PubMed] [Google Scholar]
  12. Glover T. W., Berger C., Coyle J., Echo B. DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum Genet. 1984;67(2):136–142. doi: 10.1007/BF00272988. [DOI] [PubMed] [Google Scholar]
  13. Glover T. W., Stein C. K. Chromosome breakage and recombination at fragile sites. Am J Hum Genet. 1988 Sep;43(3):265–273. [PMC free article] [PubMed] [Google Scholar]
  14. Herrmann M. A., Hay I. D., Bartelt D. H., Jr, Ritland S. R., Dahl R. J., Grant C. S., Jenkins R. B. Cytogenetic and molecular genetic studies of follicular and papillary thyroid cancers. J Clin Invest. 1991 Nov;88(5):1596–1604. doi: 10.1172/JCI115472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hibi K., Takahashi T., Yamakawa K., Ueda R., Sekido Y., Ariyoshi Y., Suyama M., Takagi H., Nakamura Y., Takahashi T. Three distinct regions involved in 3p deletion in human lung cancer. Oncogene. 1992 Mar;7(3):445–449. [PubMed] [Google Scholar]
  16. Jeanpierre C., Antignac C., Beroud C., Lavedan C., Henry I., Saunders G., Williams B., Glaser T., Junien C. Constitutional and somatic deletions of two different regions of maternal chromosome 11 in Wilms tumor. Genomics. 1990 Jul;7(3):434–438. doi: 10.1016/0888-7543(90)90179-x. [DOI] [PubMed] [Google Scholar]
  17. Jones M. H., Nakamura Y. Deletion mapping of chromosome 3p in female genital tract malignancies using microsatellite polymorphisms. Oncogene. 1992 Aug;7(8):1631–1634. [PubMed] [Google Scholar]
  18. Killary A. M., Wolf M. E., Giambernardi T. A., Naylor S. L. Definition of a tumor suppressor locus within human chromosome 3p21-p22. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10877–10881. doi: 10.1073/pnas.89.22.10877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kingsley D. M. Mouse chromosome 9. Mamm Genome. 1991;1(Spec No):S127–S145. doi: 10.1007/BF00656490. [DOI] [PubMed] [Google Scholar]
  20. Kok K., Osinga J., Carritt B., Davis M. B., van der Hout A. H., van der Veen A. Y., Landsvater R. M., de Leij L. F., Berendsen H. H., Postmus P. E. Deletion of a DNA sequence at the chromosomal region 3p21 in all major types of lung cancer. Nature. 1987 Dec 10;330(6148):578–581. doi: 10.1038/330578a0. [DOI] [PubMed] [Google Scholar]
  21. Koufos A., Grundy P., Morgan K., Aleck K. A., Hadro T., Lampkin B. C., Kalbakji A., Cavenee W. K. Familial Wiedemann-Beckwith syndrome and a second Wilms tumor locus both map to 11p15.5. Am J Hum Genet. 1989 May;44(5):711–719. [PMC free article] [PubMed] [Google Scholar]
  22. Kovacs G., Erlandsson R., Boldog F., Ingvarsson S., Müller-Brechlin R., Klein G., Sümegi J. Consistent chromosome 3p deletion and loss of heterozygosity in renal cell carcinoma. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1571–1575. doi: 10.1073/pnas.85.5.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Latif F., Fivash M., Glenn G., Tory K., Orcutt M. L., Hampsch K., Delisio J., Lerman M., Cowan J., Beckett M. Chromosome 3p deletions in head and neck carcinomas: statistical ascertainment of allelic loss. Cancer Res. 1992 Mar 15;52(6):1451–1456. [PubMed] [Google Scholar]
  24. Latif F., Tory K., Gnarra J., Yao M., Duh F. M., Orcutt M. L., Stackhouse T., Kuzmin I., Modi W., Geil L. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993 May 28;260(5112):1317–1320. doi: 10.1126/science.8493574. [DOI] [PubMed] [Google Scholar]
  25. Li F. P., Decker H. J., Zbar B., Stanton V. P., Jr, Kovacs G., Seizinger B. R., Aburatani H., Sandberg A. A., Berg S., Hosoe S. Clinical and genetic studies of renal cell carcinomas in a family with a constitutional chromosome 3;8 translocation. Genetics of familial renal carcinoma. Ann Intern Med. 1993 Jan 15;118(2):106–111. doi: 10.7326/0003-4819-118-2-199301150-00005. [DOI] [PubMed] [Google Scholar]
  26. Lothe R. A., Fosså S. D., Stenwig A. E., Nakamura Y., White R., Børresen A. L., Brøgger A. Loss of 3p or 11p alleles is associated with testicular cancer tumors. Genomics. 1989 Jul;5(1):134–138. doi: 10.1016/0888-7543(89)90097-9. [DOI] [PubMed] [Google Scholar]
  27. Maher E. R., Yates J. R., Harries R., Benjamin C., Harris R., Moore A. T., Ferguson-Smith M. A. Clinical features and natural history of von Hippel-Lindau disease. Q J Med. 1990 Nov;77(283):1151–1163. doi: 10.1093/qjmed/77.2.1151. [DOI] [PubMed] [Google Scholar]
  28. Markkanen A., Ruutu T., Rasi V., Franssila K., Knuutila S., de la Chapelle A. Constitutional translocation t(3;6)(p14;p11) in a family with hematologic malignancies. Cancer Genet Cytogenet. 1987 Mar;25(1):87–95. doi: 10.1016/0165-4608(87)90163-4. [DOI] [PubMed] [Google Scholar]
  29. Naylor S. L., Johnson B. E., Minna J. D., Sakaguchi A. Y. Loss of heterozygosity of chromosome 3p markers in small-cell lung cancer. Nature. 1987 Oct 1;329(6138):451–454. doi: 10.1038/329451a0. [DOI] [PubMed] [Google Scholar]
  30. Ogawa O., Kakehi Y., Ogawa K., Koshiba M., Sugiyama T., Yoshida O. Allelic loss at chromosome 3p characterizes clear cell phenotype of renal cell carcinoma. Cancer Res. 1991 Feb 1;51(3):949–953. [PubMed] [Google Scholar]
  31. Rabbitts P., Bergh J., Douglas J., Collins F., Waters J. A submicroscopic homozygous deletion at the D3S3 locus in a cell line isolated from a small cell lung carcinoma. Genes Chromosomes Cancer. 1990 Sep;2(3):231–238. doi: 10.1002/gcc.2870020312. [DOI] [PubMed] [Google Scholar]
  32. Rabbitts P., Douglas J., Daly M., Sundaresan V., Fox B., Haselton P., Wells F., Albertson D., Waters J., Bergh J. Frequency and extent of allelic loss in the short arm of chromosome 3 in nonsmall-cell lung cancer. Genes Chromosomes Cancer. 1989 Sep;1(1):95–105. doi: 10.1002/gcc.2870010115. [DOI] [PubMed] [Google Scholar]
  33. Takahashi H., Calvet J. P., Dittemore-Hoover D., Yoshida K., Grantham J. J., Gattone V. H., 2nd A hereditary model of slowly progressive polycystic kidney disease in the mouse. J Am Soc Nephrol. 1991 Jan;1(7):980–989. doi: 10.1681/ASN.V17980. [DOI] [PubMed] [Google Scholar]
  34. Takahashi H., Ueyama Y., Hibino T., Kuwahara Y., Suzuki S., Hioki K., Tamaoki N. A new mouse model of genetically transmitted polycystic kidney disease. J Urol. 1986 Jun;135(6):1280–1283. doi: 10.1016/s0022-5347(17)46074-5. [DOI] [PubMed] [Google Scholar]
  35. Wang N., Perkins K. L. Involvement of band 3p14 in t(3;8) hereditary renal carcinoma. Cancer Genet Cytogenet. 1984 Apr;11(4):479–481. doi: 10.1016/0165-4608(84)90028-1. [DOI] [PubMed] [Google Scholar]
  36. Yamakawa K., Morita R., Takahashi E., Hori T., Ishikawa J., Nakamura Y. A detailed deletion mapping of the short arm of chromosome 3 in sporadic renal cell carcinoma. Cancer Res. 1991 Sep 1;51(17):4707–4711. [PubMed] [Google Scholar]
  37. Yamakawa K., Takahashi T., Horio Y., Murata Y., Takahashi E., Hibi K., Yokoyama S., Ueda R., Takahashi T., Nakamura Y. Frequent homozygous deletions in lung cancer cell lines detected by a DNA marker located at 3p21.3-p22. Oncogene. 1993 Feb;8(2):327–330. [PubMed] [Google Scholar]
  38. Yokota J., Tsukada Y., Nakajima T., Gotoh M., Shimosato Y., Mori N., Tsunokawa Y., Sugimura T., Terada M. Loss of heterozygosity on the short arm of chromosome 3 in carcinoma of the uterine cervix. Cancer Res. 1989 Jul 1;49(13):3598–3601. [PubMed] [Google Scholar]
  39. Yoshida M. A., Ohyashiki K., Ochi H., Gibas Z., Pontes J. E., Prout G. R., Jr, Huben R., Sandberg A. A. Cytogenetic studies of tumor tissue from patients with nonfamilial renal cell carcinoma. Cancer Res. 1986 Apr;46(4 Pt 2):2139–2147. [PubMed] [Google Scholar]
  40. Zbar B., Brauch H., Talmadge C., Linehan M. Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. 1987 Jun 25-Jul 1Nature. 327(6124):721–724. doi: 10.1038/327721a0. [DOI] [PubMed] [Google Scholar]
  41. van der Hout A. H., van den Berg E., van der Vlies P., Dijkhuizen T., Störkel S., Oosterhuis J. W., de Jong B., Buys C. H. Loss of heterozygosity at the short arm of chromosome 3 in renal-cell cancer correlates with the cytological tumour type. Int J Cancer. 1993 Feb 1;53(3):353–357. doi: 10.1002/ijc.2910530302. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES