Skip to main content
Thorax logoLink to Thorax
. 1992 Sep;47(9):674–679. doi: 10.1136/thx.47.9.674

Lung sound intensity in patients with emphysema and in normal subjects at standardised airflows.

H J Schreur 1, P J Sterk 1, J Vanderschoot 1, H C van Klink 1, E van Vollenhoven 1, J H Dijkman 1
PMCID: PMC474797  PMID: 1440459

Abstract

BACKGROUND: A common auscultatory finding in pulmonary emphysema is a reduction of lung sounds. This might be due to a reduction in the generation of sounds due to the accompanying airflow limitation or to poor transmission of sounds due to destruction of parenchyma. Lung sound intensity was investigated in normal and emphysematous subjects in relation to airflow. METHODS: Eight normal men (45-63 years, FEV1 79-126% predicted) and nine men with severe emphysema (50-70 years, FEV1 14-63% predicted) participated in the study. Emphysema was diagnosed according to pulmonary history, results of lung function tests, and radiographic criteria. All subjects underwent phonopneumography during standardised breathing manoeuvres between 0.5 and 2 1 below total lung capacity with inspiratory and expiratory target airflows of 2 and 1 l/s respectively during 50 seconds. The synchronous measurements included airflow at the mouth and lung volume changes, and lung sounds at four locations on the right chest wall. For each microphone airflow dependent power spectra were computed by using fast Fourier transformation. Lung sound intensity was expressed as log power (in dB) at 200 Hz at inspiratory flow rates of 1 and 2 l/s and at an expiratory flow rate of 1 l/s. RESULTS: Lung sound intensity was well repeatable on two separate days, the intraclass correlation coefficient ranging from 0.77 to 0.94 between the four microphones. The intensity was strongly influenced by microphone location and airflow. There was, however, no significant difference in lung sound intensity at any flow rate between the normal and the emphysema group. CONCLUSION: Airflow standardised lung sound intensity does not differ between normal and emphysematous subjects. This suggests that the auscultatory finding of diminished breath sounds during the regular physical examination in patients with emphysema is due predominantly to airflow limitation.

Full text

PDF
676

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banaszak E. F., Kory R. C., Snider G. L. Phonopneumography. Am Rev Respir Dis. 1973 Mar;107(3):449–455. doi: 10.1164/arrd.1973.107.3.449. [DOI] [PubMed] [Google Scholar]
  2. Bland J. M., Altman D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986 Feb 8;1(8476):307–310. [PubMed] [Google Scholar]
  3. Bohadana A. B., Peslin R., Uffholtz H. Breath sounds in the clinical assessment of airflow obstruction. Thorax. 1978 Jun;33(3):345–351. doi: 10.1136/thx.33.3.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dalmasso F., Guarene M. M., Spagnolo R., Benedetto G., Righini G. A computer system for timing and acoustical analysis of crackles: a study in cryptogenic fibrosing alveolitis. Bull Eur Physiopathol Respir. 1984 Mar-Apr;20(2):139–144. [PubMed] [Google Scholar]
  5. Dosani R., Kraman S. S. Lung sound intensity variability in normal men. A contour phonopneumographic study. Chest. 1983 Apr;83(4):628–631. doi: 10.1378/chest.83.4.628. [DOI] [PubMed] [Google Scholar]
  6. Grotberg J. B., Davis S. H. Fluid-dynamic flapping of a collapsible channel: sound generation and flow limitation. J Biomech. 1980;13(3):219–230. doi: 10.1016/0021-9290(80)90365-6. [DOI] [PubMed] [Google Scholar]
  7. Hardin J. C., Patterson J. L., Jr Monitoring the state of the human airways by analysis of respiratory sound. Acta Astronaut. 1979 Sep;6(9):1137–1151. doi: 10.1016/0094-5765(79)90061-4. [DOI] [PubMed] [Google Scholar]
  8. Kraman S. S. Does the vesicular lung sound come only from the lungs? Am Rev Respir Dis. 1983 Oct;128(4):622–626. doi: 10.1164/arrd.1983.128.4.622. [DOI] [PubMed] [Google Scholar]
  9. Kraman S. S. Effects of lung volume and airflow on the frequency spectrum of vesicular lung sounds. Respir Physiol. 1986 Oct;66(1):1–9. doi: 10.1016/0034-5687(86)90134-9. [DOI] [PubMed] [Google Scholar]
  10. Kraman S. S. The forced expiratory wheeze. Its site of origin and possible association with lung compliance. Respiration. 1983 May-Jun;44(3):189–196. doi: 10.1159/000194548. [DOI] [PubMed] [Google Scholar]
  11. Kraman S. S. The relationship between airflow and lung sound amplitude in normal subjects. Chest. 1984 Aug;86(2):225–229. doi: 10.1378/chest.86.2.225. [DOI] [PubMed] [Google Scholar]
  12. Kraman S. S., Wang P. M. Airflow-generated sound in a hollow canine airway cast. Chest. 1990 Feb;97(2):461–466. doi: 10.1378/chest.97.2.461. [DOI] [PubMed] [Google Scholar]
  13. Leblanc P., Macklem P. T., Ross W. R. Breath sounds and distribution of pulmonary ventilation. Am Rev Respir Dis. 1970 Jul;102(1):10–16. doi: 10.1164/arrd.1970.102.1.10. [DOI] [PubMed] [Google Scholar]
  14. Linhartová A., Anderson A. E., Jr, Foraker A. G. Further observations on luminal deformity and stenosis of nonrespiratory bronchioles in pulmonary emphysema. Thorax. 1977 Feb;32(1):53–59. doi: 10.1136/thx.32.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Linhartová A., Anderson A. E., Jr Small airways in severe panlobular emphysema: mural thickening and premature closure. Am Rev Respir Dis. 1983 Jan;127(1):42–45. doi: 10.1164/arrd.1983.127.1.42. [DOI] [PubMed] [Google Scholar]
  16. Lohela P., Sutinen S., Päkkö P., Lahti R., Tienari J. Diagnosis of emphysema on chest radiographs. Rofo. 1984 Oct;141(4):395–402. doi: 10.1055/s-2008-1053157. [DOI] [PubMed] [Google Scholar]
  17. Loudon R., Murphy R. L., Jr Lung sounds. Am Rev Respir Dis. 1984 Oct;130(4):663–673. doi: 10.1164/arrd.1984.130.4.663. [DOI] [PubMed] [Google Scholar]
  18. Nairn J. R., Turner-Warwick M. Breath sounds in emphysema. Br J Dis Chest. 1969 Jan;63(1):29–37. doi: 10.1016/s0007-0971(69)80041-0. [DOI] [PubMed] [Google Scholar]
  19. O'Donnell D. M., Kraman S. S. Vesicular lung sound amplitude mapping by automated flow-gated phonopneumography. J Appl Physiol Respir Environ Exerc Physiol. 1982 Sep;53(3):603–609. doi: 10.1152/jappl.1982.53.3.603. [DOI] [PubMed] [Google Scholar]
  20. Pardee N. E., Martin C. J., Morgan E. H. A test of the practical value of estimating breath sound intensity. Breath sounds related to measured ventilatory function. Chest. 1976 Sep;70(03):341–344. doi: 10.1378/chest.70.3.341. [DOI] [PubMed] [Google Scholar]
  21. Ploysongsang Y., Pare J. A., Macklem P. T. Lung sounds in patients with emphysema. Am Rev Respir Dis. 1981 Jul;124(1):45–49. doi: 10.1164/arrd.1981.124.1.45. [DOI] [PubMed] [Google Scholar]
  22. Ploysongsang Y., Paré J. A., Macklem P. T. Correlation of regional breath sound with regional ventilation in emphysema. Am Rev Respir Dis. 1982 Sep;126(3):526–529. doi: 10.1164/arrd.1982.126.3.526. [DOI] [PubMed] [Google Scholar]
  23. Rice D. A. Sound speed in pulmonary parenchyma. J Appl Physiol Respir Environ Exerc Physiol. 1983 Jan;54(1):304–308. doi: 10.1152/jappl.1983.54.1.304. [DOI] [PubMed] [Google Scholar]
  24. Schreiber J. R., Anderson W. F., Wegmann M. J., Waring W. W. Frequency analysis of breath sounds by phonopneumography. Med Instrum. 1981 Sep-Oct;15(5):331–334. [PubMed] [Google Scholar]
  25. Shykoff B. E., Ploysongsang Y., Chang H. K. Airflow and normal lung sounds. Am Rev Respir Dis. 1988 Apr;137(4):872–876. doi: 10.1164/ajrccm/137.4.872. [DOI] [PubMed] [Google Scholar]
  26. Thurlbeck W. M. Pathophysiology of chronic obstructive pulmonary disease. Clin Chest Med. 1990 Sep;11(3):389–403. [PubMed] [Google Scholar]
  27. Thurlbeck W. M., Simon G. Radiographic appearance of the chest in emphysema. AJR Am J Roentgenol. 1978 Mar;130(3):429–440. doi: 10.2214/ajr.130.3.429. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES