Skip to main content
Thorax logoLink to Thorax
. 1992 Sep;47(9):748–752. doi: 10.1136/thx.47.9.748

The airway microvasculature and exercise induced asthma.

S D Anderson 1, E Daviskas 1
PMCID: PMC474814  PMID: 1440473

Abstract

It has been proposed that exercise induced asthma is a result of "rapid expansion of the blood volume of peribronchial plexi" (McFadden ER, Lancet 1990;335:880-3). This hypothesis proposes that the development of exercise induced asthma depends on the thermal gradient in the airways at the end of hyperpnoea. The events that result in exercise induced asthma are vasoconstriction and airway cooling followed by reactive hyperaemia. We agree that the airway microcirculation has the potential for contributing to the pathophysiology of exercise induced asthma. We do, however, question whether reactive hyperaemia, in response to airway cooling, is the mechanism whereby hyperpnoea provokes airways obstruction in asthmatic patients. Further, we question whether vasoconstriction accompanies dry air breathing and whether an abnormal temperature gradient and rapid rewarming of the airways are prerequisites for exercise induced asthma. From published experiments we conclude that dry air breathing is associated with vasodilation and increase in airway blood flow rather than vasoconstriction and a decrease in blood flow to the airways. We propose that the stimulus for the increase in airway blood flow is an increase in osmolarity of the airway submucosa. This osmotic change is caused by the movement of water to the airway lumen in response to evaporative water loss during hyperpnoea. The increase in airway blood flow may occur directly or indirectly by the osmotic release of mediators. Exercise induced asthma is most likely to be due to the contraction of bronchial smooth muscle caused by the same mediators. Whether it is enhanced or inhibited by alterations in airway blood flow is not yet established in man.

Full text

PDF
752

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agostoni P., Arena V., Doria E., Susini G. Inspired gas relative humidity affects systemic to pulmonary bronchial blood flow in humans. Chest. 1990 Jun;97(6):1377–1380. doi: 10.1378/chest.97.6.1377. [DOI] [PubMed] [Google Scholar]
  2. Anderson S. D., Daviskas E., Smith C. M. Exercise-induced asthma: a difference in opinion regarding the stimulus. Allergy Proc. 1989 May-Jun;10(3):215–226. doi: 10.2500/108854189778960054. [DOI] [PubMed] [Google Scholar]
  3. Anderson S. D. Is there a unifying hypothesis for exercise-induced asthma? J Allergy Clin Immunol. 1984 May;73(5 Pt 2):660–665. doi: 10.1016/0091-6749(84)90301-4. [DOI] [PubMed] [Google Scholar]
  4. Anderson S. D., Schoeffel R. E., Black J. L., Daviskas E. Airway cooling as the stimulus to exercise-induced asthma--a re-evaluation. Eur J Respir Dis. 1985 Jul;67(1):20–30. [PubMed] [Google Scholar]
  5. Assoufi B. K., Dally M. B., Newman-Taylor A. J., Denison D. M. Cold air test: a simplified standard method for airway reactivity. Bull Eur Physiopathol Respir. 1986 Jul-Aug;22(4):349–357. [PubMed] [Google Scholar]
  6. BURTON J. D. Effects of dry anaesthetic gases on the respiratory mucous membrane. Lancet. 1962 Feb 3;1(7223):235–238. doi: 10.1016/s0140-6736(62)91187-x. [DOI] [PubMed] [Google Scholar]
  7. Baile E. M., Dahlby R. W., Wiggs B. R., Parsons G. H., Paré P. D. Effect of cold and warm dry air hyperventilation on canine airway blood flow. J Appl Physiol (1985) 1987 Feb;62(2):526–532. doi: 10.1152/jappl.1987.62.2.526. [DOI] [PubMed] [Google Scholar]
  8. Baile E. M., Godden D. J., Paré P. D. Mechanism for increase in tracheobronchial blood flow induced by hyperventilation of dry air in dogs. J Appl Physiol (1985) 1990 Jan;68(1):105–112. doi: 10.1152/jappl.1990.68.1.105. [DOI] [PubMed] [Google Scholar]
  9. Basran G. S., Paul W., Morley J., Turner-Warwick M. Adrenoceptor-agonist inhibition of the histamine-induced cutaneous response in man. Br J Dermatol. 1982 Nov;107 (Suppl 23):140–142. doi: 10.1111/j.1365-2133.1982.tb01046.x. [DOI] [PubMed] [Google Scholar]
  10. Bierman C. W., Pierson W. E., Shapiro G. G. Exercise-induced asthma. Pharmacological assessment of single drugs and drug combinations. JAMA. 1975 Oct 20;234(3):295–298. doi: 10.1001/jama.234.3.295. [DOI] [PubMed] [Google Scholar]
  11. Blackie S. P., Hilliam C., Village R., Paré P. D. The time course of bronchoconstriction in asthmatics during and after isocapnic hyperventilation. Am Rev Respir Dis. 1990 Nov;142(5):1133–1136. doi: 10.1164/ajrccm/142.5.1133. [DOI] [PubMed] [Google Scholar]
  12. Chalon J., Loew D. A., Malebranche J. Effects of dry anesthetic gases on tracheobronchial ciliated epithelium. Anesthesiology. 1972 Sep;37(3):338–343. doi: 10.1097/00000542-197209000-00010. [DOI] [PubMed] [Google Scholar]
  13. Convertino V. A., Keil L. C., Bernauer E. M., Greenleaf J. E. Plasma volume, osmolality, vasopressin, and renin activity during graded exercise in man. J Appl Physiol Respir Environ Exerc Physiol. 1981 Jan;50(1):123–128. doi: 10.1152/jappl.1981.50.1.123. [DOI] [PubMed] [Google Scholar]
  14. Corfield D. R., Hanafi Z., Webber S. E., Widdicombe J. G. Changes in tracheal mucosal thickness and blood flow in sheep. J Appl Physiol (1985) 1991 Oct;71(4):1282–1288. doi: 10.1152/jappl.1991.71.4.1282. [DOI] [PubMed] [Google Scholar]
  15. Csete M. E., Abraham W. M., Wanner A. Vasomotion influences airflow in peripheral airways. Am Rev Respir Dis. 1990 Jun;141(6):1409–1413. doi: 10.1164/ajrccm/141.6.1409. [DOI] [PubMed] [Google Scholar]
  16. Daviskas E., Gonda I., Anderson S. D. Local airway heat and water vapour losses. Respir Physiol. 1991 Apr;84(1):115–132. doi: 10.1016/0034-5687(91)90023-c. [DOI] [PubMed] [Google Scholar]
  17. Daviskas E., Gonda I., Anderson S. D. Mathematical modeling of heat and water transport in human respiratory tract. J Appl Physiol (1985) 1990 Jul;69(1):362–372. doi: 10.1152/jappl.1990.69.1.362. [DOI] [PubMed] [Google Scholar]
  18. Deal E. C., Jr, McFadden E. R., Jr, Ingram R. H., Jr, Strauss R. H., Jaeger J. J. Role of respiratory heat exchange in production of exercise-induced asthma. J Appl Physiol Respir Environ Exerc Physiol. 1979 Mar;46(3):467–475. doi: 10.1152/jappl.1979.46.3.467. [DOI] [PubMed] [Google Scholar]
  19. Deffebach M. E., Salonen R. O., Webber S. E., Widdicombe J. G. Cold and hyperosmolar fluids in canine trachea: vascular and smooth muscle tone and albumin flux. J Appl Physiol (1985) 1989 Mar;66(3):1309–1315. doi: 10.1152/jappl.1989.66.3.1309. [DOI] [PubMed] [Google Scholar]
  20. Eggleston P. A., Kagey-Sobotka A., Lichtenstein L. M. A comparison of the osmotic activation of basophils and human lung mast cells. Am Rev Respir Dis. 1987 May;135(5):1043–1048. doi: 10.1164/arrd.1987.135.5.1043. [DOI] [PubMed] [Google Scholar]
  21. Eschenbacher W. L., Sheppard D. Respiratory heat loss is not the sole stimulus for bronchoconstriction induced by isocapnic hyperpnea with dry air. Am Rev Respir Dis. 1985 Jun;131(6):894–901. doi: 10.1164/arrd.1985.131.6.894. [DOI] [PubMed] [Google Scholar]
  22. Freed A. N., Fuller S. D., Stream C. E. Transient airway cooling modulates dry-air-induced and hypertonic aerosol-induced bronchoconstriction. Am Rev Respir Dis. 1991 Aug;144(2):358–362. doi: 10.1164/ajrccm/144.2.358. [DOI] [PubMed] [Google Scholar]
  23. Gilbert I. A., Fouke J. M., McFadden E. R., Jr Heat and water flux in the intrathoracic airways and exercise-induced asthma. J Appl Physiol (1985) 1987 Oct;63(4):1681–1691. doi: 10.1152/jappl.1987.63.4.1681. [DOI] [PubMed] [Google Scholar]
  24. Gilbert I. A., Fouke J. M., McFadden E. R., Jr The effect of repetitive exercise on airway temperatures. Am Rev Respir Dis. 1990 Oct;142(4):826–831. doi: 10.1164/ajrccm/142.4.826. [DOI] [PubMed] [Google Scholar]
  25. Gilbert I. A., Regnard J., Lenner K. A., Nelson J. A., McFadden E. R., Jr Intrathoracic airstream temperatures during acute expansions of thoracic blood volume. Clin Sci (Lond) 1991 Nov;81(5):655–661. doi: 10.1042/cs0810655. [DOI] [PubMed] [Google Scholar]
  26. Hahn A., Anderson S. D., Morton A. R., Black J. L., Fitch K. D. A reinterpretation of the effect of temperature and water content of the inspired air in exercise-induced asthma. Am Rev Respir Dis. 1984 Oct;130(4):575–579. doi: 10.1164/arrd.1984.130.4.575. [DOI] [PubMed] [Google Scholar]
  27. Ingenito E., Solway J., Lafleur J., Lombardo A., Drazen J. M., Pichurko B. Dissociation of temperature-gradient and evaporative heat loss during cold gas hyperventilation in cold-induced asthma. Am Rev Respir Dis. 1988 Sep;138(3):540–546. doi: 10.1164/ajrccm/138.3.540. [DOI] [PubMed] [Google Scholar]
  28. Laursen L. C., Johannesson N., Weeke B. Effects of enprofylline and theophylline on exercise-induced asthma. Allergy. 1985 Oct;40(7):506–509. doi: 10.1111/j.1398-9995.1985.tb00258.x. [DOI] [PubMed] [Google Scholar]
  29. Long W. M., Sprung C. L., el Fawal H., Yerger L. D., Eyre P., Abraham W. M., Wanner A. Effects of histamine on bronchial artery blood flow and bronchomotor tone. J Appl Physiol (1985) 1985 Jul;59(1):254–261. doi: 10.1152/jappl.1985.59.1.254. [DOI] [PubMed] [Google Scholar]
  30. McFadden E. R., Jr Hypothesis: exercise-induced asthma as a vascular phenomenon. Lancet. 1990 Apr 14;335(8694):880–883. doi: 10.1016/0140-6736(90)90478-n. [DOI] [PubMed] [Google Scholar]
  31. McFadden E. R., Jr, Lenner K. A., Strohl K. P. Postexertional airway rewarming and thermally induced asthma. New insights into pathophysiology and possible pathogenesis. J Clin Invest. 1986 Jul;78(1):18–25. doi: 10.1172/JCI112549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Moreno R. H., Hogg J. C., Paré P. D. Mechanics of airway narrowing. Am Rev Respir Dis. 1986 Jun;133(6):1171–1180. doi: 10.1164/arrd.1986.133.6.1171. [DOI] [PubMed] [Google Scholar]
  33. Nose H., Takamata A., Mack G. W., Oda Y., Okuno T., Kang D. H., Morimoto T. Water and electrolyte balance in the vascular space during graded exercise in humans. J Appl Physiol (1985) 1991 Jun;70(6):2757–2762. doi: 10.1152/jappl.1991.70.6.2757. [DOI] [PubMed] [Google Scholar]
  34. Parsons G. H., Paré P. D., White D. A., Baile E. M. Airway blood flow response to eucapnic dry air hyperventilation in sheep. J Appl Physiol (1985) 1989 Mar;66(3):1443–1447. doi: 10.1152/jappl.1989.66.3.1443. [DOI] [PubMed] [Google Scholar]
  35. Persson C. G., Erjefält I., Alkner U., Baumgarten C., Greiff L., Gustafsson B., Luts A., Pipkorn U., Sundler F., Svensson C. Plasma exudation as a first line respiratory mucosal defence. Clin Exp Allergy. 1991 Jan;21(1):17–24. doi: 10.1111/j.1365-2222.1991.tb00799.x. [DOI] [PubMed] [Google Scholar]
  36. Persson C. G. Leakage of macromolecules from the tracheobronchial microcirculation. Am Rev Respir Dis. 1987 Jun;135(6 Pt 2):S71–S75. doi: 10.1164/arrd.1987.135.6P2.S71. [DOI] [PubMed] [Google Scholar]
  37. Salonen R. O., Webber S. E., Deffebach M. E., Widdicombe J. G. Tracheal vascular and smooth muscle responses to air temperature and humidity in dogs. J Appl Physiol (1985) 1991 Jul;71(1):50–59. doi: 10.1152/jappl.1991.71.1.50. [DOI] [PubMed] [Google Scholar]
  38. Silverman M., Anderson S. D. Standardization of exercise tests in asthmatic children. Arch Dis Child. 1972 Dec;47(256):882–889. doi: 10.1136/adc.47.256.882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Smith C. M., Anderson S. D. A comparison between the airway response to isocapnic hyperventilation and hypertonic saline in subjects with asthma. Eur Respir J. 1989 Jan;2(1):36–43. [PubMed] [Google Scholar]
  40. Smith C. M., Anderson S. D. Inhalation provocation tests using nonisotonic aerosols. J Allergy Clin Immunol. 1989 Nov;84(5 Pt 1):781–790. doi: 10.1016/0091-6749(89)90309-6. [DOI] [PubMed] [Google Scholar]
  41. Smith C. M., Anderson S. D., Walsh S., McElrea M. S. An investigation of the effects of heat and water exchange in the recovery period after exercise in children with asthma. Am Rev Respir Dis. 1989 Sep;140(3):598–605. doi: 10.1164/ajrccm/140.3.598. [DOI] [PubMed] [Google Scholar]
  42. Tabka Z., Ben Jebria A., Vergeret J., Guenard H. Effect of dry warm air on respiratory water loss in children with exercise-induced asthma. Chest. 1988 Jul;94(1):81–86. doi: 10.1378/chest.94.1.81. [DOI] [PubMed] [Google Scholar]
  43. Umeno E., McDonald D. M., Nadel J. A. Hypertonic saline increases vascular permeability in the rat trachea by producing neurogenic inflammation. J Clin Invest. 1990 Jun;85(6):1905–1908. doi: 10.1172/JCI114652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yankaskas J. R., Gatzy J. T., Boucher R. C. Effects of raised osmolarity on canine tracheal epithelial ion transport function. J Appl Physiol (1985) 1987 Jun;62(6):2241–2245. doi: 10.1152/jappl.1987.62.6.2241. [DOI] [PubMed] [Google Scholar]
  45. Zawadski D. K., Lenner K. A., McFadden E. R., Jr Comparison of intraairway temperatures in normal and asthmatic subjects after hyperpnea with hot, cold, and ambient air. Am Rev Respir Dis. 1988 Dec;138(6):1553–1558. doi: 10.1164/ajrccm/138.6.1553. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES