Skip to main content
Thorax logoLink to Thorax
. 1994 Jun;49(6):602–609. doi: 10.1136/thx.49.6.602

Matrix metalloproteases and lung disease.

C M O'Connor 1, M X FitzGerald 1
PMCID: PMC474961  PMID: 8016800

Full text

PDF
602

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birkedal-Hansen H., Moore W. G., Bodden M. K., Windsor L. J., Birkedal-Hansen B., DeCarlo A., Engler J. A. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med. 1993;4(2):197–250. doi: 10.1177/10454411930040020401. [DOI] [PubMed] [Google Scholar]
  2. Birkedal-Hansen H. Role of matrix metalloproteinases in human periodontal diseases. J Periodontol. 1993 May;64(5 Suppl):474–484. doi: 10.1902/jop.1993.64.5s.474. [DOI] [PubMed] [Google Scholar]
  3. Bitterman P. B. Pathogenesis of fibrosis in acute lung injury. Am J Med. 1992 Jun 22;92(6A):39S–43S. doi: 10.1016/0002-9343(92)90606-c. [DOI] [PubMed] [Google Scholar]
  4. Brinckerhoff C. E. Regulation of metalloproteinase gene expression: implications for osteoarthritis. Crit Rev Eukaryot Gene Expr. 1992;2(2):145–164. [PubMed] [Google Scholar]
  5. Busiek D. F., Ross F. P., McDonnell S., Murphy G., Matrisian L. M., Welgus H. G. The matrix metalloprotease matrilysin (PUMP) is expressed in developing human mononuclear phagocytes. J Biol Chem. 1992 May 5;267(13):9087–9092. [PubMed] [Google Scholar]
  6. Cawston T. E., Mercer E. Preferential binding of collagenase to alpha 2-macroglobulin in the presence of the tissue inhibitor of metalloproteinases. FEBS Lett. 1986 Dec 1;209(1):9–12. doi: 10.1016/0014-5793(86)81074-2. [DOI] [PubMed] [Google Scholar]
  7. Christner P., Fein A., Goldberg S., Lippmann M., Abrams W., Weinbaum G. Collagenase in the lower respiratory tract of patients with adult respiratory distress syndrome. Am Rev Respir Dis. 1985 May;131(5):690–695. doi: 10.1164/arrd.1985.131.5.690. [DOI] [PubMed] [Google Scholar]
  8. Clark S. D., Kobayashi D. K., Welgus H. G. Regulation of the expression of tissue inhibitor of metalloproteinases and collagenase by retinoids and glucocorticoids in human fibroblasts. J Clin Invest. 1987 Nov;80(5):1280–1288. doi: 10.1172/JCI113203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Collier I. E., Krasnov P. A., Strongin A. Y., Birkedal-Hansen H., Goldberg G. I. Alanine scanning mutagenesis and functional analysis of the fibronectin-like collagen-binding domain from human 92-kDa type IV collagenase. J Biol Chem. 1992 Apr 5;267(10):6776–6781. [PubMed] [Google Scholar]
  10. D'Armiento J., Dalal S. S., Okada Y., Berg R. A., Chada K. Collagenase expression in the lungs of transgenic mice causes pulmonary emphysema. Cell. 1992 Dec 11;71(6):955–961. doi: 10.1016/0092-8674(92)90391-o. [DOI] [PubMed] [Google Scholar]
  11. Davidson J. M. Biochemistry and turnover of lung interstitium. Eur Respir J. 1990 Oct;3(9):1048–1063. [PubMed] [Google Scholar]
  12. Davies B., Miles D. W., Happerfield L. C., Naylor M. S., Bobrow L. G., Rubens R. D., Balkwill F. R. Activity of type IV collagenases in benign and malignant breast disease. Br J Cancer. 1993 May;67(5):1126–1131. doi: 10.1038/bjc.1993.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Davies M., Martin J., Thomas G. J., Lovett D. H. Proteinases and glomerular matrix turnover. Kidney Int. 1992 Mar;41(3):671–678. doi: 10.1038/ki.1992.103. [DOI] [PubMed] [Google Scholar]
  14. DeClerck Y. A., Perez N., Shimada H., Boone T. C., Langley K. E., Taylor S. M. Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res. 1992 Feb 1;52(3):701–708. [PubMed] [Google Scholar]
  15. Docherty A. J., Murphy G. The tissue metalloproteinase family and the inhibitor TIMP: a study using cDNAs and recombinant proteins. Ann Rheum Dis. 1990 Jun;49 (Suppl 1):469–479. [PubMed] [Google Scholar]
  16. Donnelly S. C., Strieter R. M., Kunkel S. L., Walz A., Robertson C. R., Carter D. C., Grant I. S., Pollok A. J., Haslett C. Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet. 1993 Mar 13;341(8846):643–647. doi: 10.1016/0140-6736(93)90416-e. [DOI] [PubMed] [Google Scholar]
  17. Emonard H. P., Remacle A. G., Noël A. C., Grimaud J. A., Stetler-Stevenson W. G., Foidart J. M. Tumor cell surface-associated binding site for the M(r) 72,000 type IV collagenase. Cancer Res. 1992 Oct 15;52(20):5845–5848. [PubMed] [Google Scholar]
  18. Emonard H., Grimaud J. A. Matrix metalloproteinases. A review. Cell Mol Biol. 1990;36(2):131–153. [PubMed] [Google Scholar]
  19. Falloon J., Gallin J. I. Neutrophil granules in health and disease. J Allergy Clin Immunol. 1986 May;77(5):653–662. doi: 10.1016/0091-6749(86)90404-5. [DOI] [PubMed] [Google Scholar]
  20. Fields G. B., Van Wart H. E., Birkedal-Hansen H. Sequence specificity of human skin fibroblast collagenase. Evidence for the role of collagen structure in determining the collagenase cleavage site. J Biol Chem. 1987 May 5;262(13):6221–6226. [PubMed] [Google Scholar]
  21. Fini M. E., Girard M. T., Matsubara M. Collagenolytic/gelatinolytic enzymes in corneal wound healing. Acta Ophthalmol Suppl. 1992;(202):26–33. doi: 10.1111/j.1755-3768.1992.tb02165.x. [DOI] [PubMed] [Google Scholar]
  22. Gadek J. E., Fells G. A., Zimmerman R. L., Crystal R. G. Role of connective tissue proteases in the pathogenesis of chronic inflammatory lung disease. Environ Health Perspect. 1984 Apr;55:297–306. doi: 10.1289/ehp.8455297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gadek J. E., Kelman J. A., Fells G., Weinberger S. E., Horwitz A. L., Reynolds H. Y., Fulmer J. D., Crystal R. G. Collagenase in the lower respiratory tract of patients with idiopathic pulmonary fibrosis. N Engl J Med. 1979 Oct 4;301(14):737–742. doi: 10.1056/NEJM197910043011401. [DOI] [PubMed] [Google Scholar]
  24. Garbisa S., Ballin M., Daga-Gordini D., Fastelli G., Naturale M., Negro A., Semenzato G., Liotta L. A. Transient expression of type IV collagenolytic metalloproteinase by human mononuclear phagocytes. J Biol Chem. 1986 Feb 15;261(5):2369–2375. [PubMed] [Google Scholar]
  25. Gavrilovic J., Murphy G. The role of plasminogen in cell-mediated collagen degradation. Cell Biol Int Rep. 1989 Apr;13(4):367–375. doi: 10.1016/0309-1651(89)90163-x. [DOI] [PubMed] [Google Scholar]
  26. Gilligan D. M., O'Connor C. M., Ward K., Moloney D., Bresnihan B., FitzGerald M. X. Bronchoalveolar lavage in patients with mild and severe rheumatoid lung disease. Thorax. 1990 Aug;45(8):591–596. doi: 10.1136/thx.45.8.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hammar H. Wound healing. Int J Dermatol. 1993 Jan;32(1):6–15. doi: 10.1111/j.1365-4362.1993.tb00950.x. [DOI] [PubMed] [Google Scholar]
  28. Hanlon W. A., Stolk J., Davies P., Humes J. L., Mumford R., Bonney R. J. rTNF alpha facilitates human polymorphonuclear leukocyte adherence to fibrinogen matrices with mobilization of specific and tertiary but not azurophilic granule markers. J Leukoc Biol. 1991 Jul;50(1):43–48. doi: 10.1002/jlb.50.1.43. [DOI] [PubMed] [Google Scholar]
  29. Harris E. D., Jr, Krane S. M. An endopeptidase from rheumatoid synovial tissue culture. Biochim Biophys Acta. 1972 Feb 28;258(2):566–576. doi: 10.1016/0005-2744(72)90249-5. [DOI] [PubMed] [Google Scholar]
  30. Hasty K. A., Pourmotabbed T. F., Goldberg G. I., Thompson J. P., Spinella D. G., Stevens R. M., Mainardi C. L. Human neutrophil collagenase. A distinct gene product with homology to other matrix metalloproteinases. J Biol Chem. 1990 Jul 15;265(20):11421–11424. [PubMed] [Google Scholar]
  31. Hibbs M. S., Hasty K. A., Kang A. H., Mainardi C. L. Secretion of collagenolytic enzymes by human polymorphonuclear leukocytes. Coll Relat Res. 1984 Dec;4(6):467–477. doi: 10.1016/s0174-173x(84)80013-8. [DOI] [PubMed] [Google Scholar]
  32. Hibbs M. S., Hasty K. A., Seyer J. M., Kang A. H., Mainardi C. L. Biochemical and immunological characterization of the secreted forms of human neutrophil gelatinase. J Biol Chem. 1985 Feb 25;260(4):2493–2500. [PubMed] [Google Scholar]
  33. Howard E. W., Bullen E. C., Banda M. J. Preferential inhibition of 72- and 92-kDa gelatinases by tissue inhibitor of metalloproteinases-2. J Biol Chem. 1991 Jul 15;266(20):13070–13075. [PubMed] [Google Scholar]
  34. Hurewitz A. N., Wu C. L., Mancuso P., Zucker S. Tetracycline and doxycycline inhibit pleural fluid metalloproteinases. A possible mechanism for chemical pleurodesis. Chest. 1993 Apr;103(4):1113–1117. doi: 10.1378/chest.103.4.1113. [DOI] [PubMed] [Google Scholar]
  35. Hurewitz A. N., Zucker S., Mancuso P., Wu C. L., Dimassimo B., Lysik R. M., Moutsiakis D. Human pleural effusions are rich in matrix metalloproteinases. Chest. 1992 Dec;102(6):1808–1814. doi: 10.1378/chest.102.6.1808. [DOI] [PubMed] [Google Scholar]
  36. Hurewitz A. N., Zucker S., Mancuso P., Wu C. L., Dimassimo B., Lysik R. M., Moutsiakis D. Human pleural effusions are rich in matrix metalloproteinases. Chest. 1992 Dec;102(6):1808–1814. doi: 10.1378/chest.102.6.1808. [DOI] [PubMed] [Google Scholar]
  37. Jonat C., Stein B., Ponta H., Herrlich P., Rahmsdorf H. J. Positive and negative regulation of collagenase gene expression. Matrix Suppl. 1992;1:145–155. [PubMed] [Google Scholar]
  38. Khokha R., Waterhouse P., Lala P., Zimmer M., Denhardt D. T., Khokka R. Increased proteinase expression during tumor progression of cell lines down-modulated for TIMP levels: a new transformation paradigm? [corrected]. J Cancer Res Clin Oncol. 1991;117(4):333–338. doi: 10.1007/BF01630716. [DOI] [PubMed] [Google Scholar]
  39. Liotta L. A., Tryggvason K., Garbisa S., Hart I., Foltz C. M., Shafie S. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature. 1980 Mar 6;284(5751):67–68. doi: 10.1038/284067a0. [DOI] [PubMed] [Google Scholar]
  40. Mackay A. R., Hartzler J. L., Pelina M. D., Thorgeirsson U. P. Studies on the ability of 65-kDa and 92-kDa tumor cell gelatinases to degrade type IV collagen. J Biol Chem. 1990 Dec 15;265(35):21929–21934. [PubMed] [Google Scholar]
  41. Mainardi C. L., Hibbs M. S., Hasty K. A., Seyer J. M. Purification of a type V collagen degrading metalloproteinase from rabbit alveolar macrophages. Coll Relat Res. 1984 Dec;4(6):479–492. doi: 10.1016/s0174-173x(84)80014-x. [DOI] [PubMed] [Google Scholar]
  42. Mallya S. K., Mookhtiar K. A., Gao Y., Brew K., Dioszegi M., Birkedal-Hansen H., Van Wart H. E. Characterization of 58-kilodalton human neutrophil collagenase: comparison with human fibroblast collagenase. Biochemistry. 1990 Nov 27;29(47):10628–10634. doi: 10.1021/bi00499a008. [DOI] [PubMed] [Google Scholar]
  43. Masure S., Proost P., Van Damme J., Opdenakker G. Purification and identification of 91-kDa neutrophil gelatinase. Release by the activating peptide interleukin-8. Eur J Biochem. 1991 Jun 1;198(2):391–398. doi: 10.1111/j.1432-1033.1991.tb16027.x. [DOI] [PubMed] [Google Scholar]
  44. Matrisian L. M., Ganser G. L., Kerr L. D., Pelton R. W., Wood L. D. Negative regulation of gene expression by TGF-beta. Mol Reprod Dev. 1992 Jun;32(2):111–120. doi: 10.1002/mrd.1080320206. [DOI] [PubMed] [Google Scholar]
  45. Matrisian L. M., Hogan B. L. Growth factor-regulated proteases and extracellular matrix remodeling during mammalian development. Curr Top Dev Biol. 1990;24:219–259. doi: 10.1016/s0070-2153(08)60089-7. [DOI] [PubMed] [Google Scholar]
  46. Matrisian L. M. Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet. 1990 Apr;6(4):121–125. doi: 10.1016/0168-9525(90)90126-q. [DOI] [PubMed] [Google Scholar]
  47. Matrisian L. M. The matrix-degrading metalloproteinases. Bioessays. 1992 Jul;14(7):455–463. doi: 10.1002/bies.950140705. [DOI] [PubMed] [Google Scholar]
  48. Mollinedo F., Pulido R., Lacal P. M., Sanchez-Madrid F. Mobilization of gelatinase-rich granules as a regulatory mechanism of early functional responses in human neutrophils. Scand J Immunol. 1991 Jul;34(1):33–43. doi: 10.1111/j.1365-3083.1991.tb01518.x. [DOI] [PubMed] [Google Scholar]
  49. Murphy G., Allan J. A., Willenbrock F., Cockett M. I., O'Connell J. P., Docherty A. J. The role of the C-terminal domain in collagenase and stromelysin specificity. J Biol Chem. 1992 May 15;267(14):9612–9618. [PubMed] [Google Scholar]
  50. Murphy G., Cockett M. I., Stephens P. E., Smith B. J., Docherty A. J. Stromelysin is an activator of procollagenase. A study with natural and recombinant enzymes. Biochem J. 1987 Nov 15;248(1):265–268. doi: 10.1042/bj2480265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Murphy G., Docherty A. J. The matrix metalloproteinases and their inhibitors. Am J Respir Cell Mol Biol. 1992 Aug;7(2):120–125. doi: 10.1165/ajrcmb/7.2.120. [DOI] [PubMed] [Google Scholar]
  52. Murphy G., McAlpine C. G., Poll C. T., Reynolds J. J. Purification and characterization of a bone metalloproteinase that degrades gelatin and types IV and V collagen. Biochim Biophys Acta. 1985 Sep 20;831(1):49–58. doi: 10.1016/0167-4838(85)90148-7. [DOI] [PubMed] [Google Scholar]
  53. Murphy G. The regulation of connective tissue metalloproteinases by natural inhibitors. Agents Actions Suppl. 1991;35:69–76. [PubMed] [Google Scholar]
  54. Murphy G., Willenbrock F., Ward R. V., Cockett M. I., Eaton D., Docherty A. J. The C-terminal domain of 72 kDa gelatinase A is not required for catalysis, but is essential for membrane activation and modulates interactions with tissue inhibitors of metalloproteinases. Biochem J. 1992 May 1;283(Pt 3):637–641. doi: 10.1042/bj2830637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Murphy G., Willenbrock F., Ward R. V., Cockett M. I., Eaton D., Docherty A. J. The C-terminal domain of 72 kDa gelatinase A is not required for catalysis, but is essential for membrane activation and modulates interactions with tissue inhibitors of metalloproteinases. Biochem J. 1992 May 1;283(Pt 3):637–641. doi: 10.1042/bj2830637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Nagase H., Ogata Y., Suzuki K., Enghild J. J., Salvesen G. Substrate specificities and activation mechanisms of matrix metalloproteinases. Biochem Soc Trans. 1991 Aug;19(3):715–718. doi: 10.1042/bst0190715. [DOI] [PubMed] [Google Scholar]
  57. O'Connor C., Odlum C., Van Breda A., Power C., Fitzgerald M. X. Collagenase and fibronectin in bronchoalveolar lavage fluid in patients with sarcoidosis. Thorax. 1988 May;43(5):393–400. doi: 10.1136/thx.43.5.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Okada Y., Watanabe S., Nakanishi I., Kishi J., Hayakawa T., Watorek W., Travis J., Nagase H. Inactivation of tissue inhibitor of metalloproteinases by neutrophil elastase and other serine proteinases. FEBS Lett. 1988 Feb 29;229(1):157–160. doi: 10.1016/0014-5793(88)80817-2. [DOI] [PubMed] [Google Scholar]
  59. Overall C. M., Wrana J. L., Sodek J. Induction of formative and resorptive cellular phenotypes in human gingival fibroblasts by TGF-beta 1 and concanavalin A: regulation of matrix metalloproteinases and TIMP. J Periodontal Res. 1991 May;26(3 Pt 2):279–282. doi: 10.1111/j.1600-0765.1991.tb01658.x. [DOI] [PubMed] [Google Scholar]
  60. Overall C. M., Wrana J. L., Sodek J. Transforming growth factor-beta regulation of collagenase, 72 kDa-progelatinase, TIMP and PAI-1 expression in rat bone cell populations and human fibroblasts. Connect Tissue Res. 1989;20(1-4):289–294. doi: 10.3109/03008208909023899. [DOI] [PubMed] [Google Scholar]
  61. Pardo A., Selman M., Ramírez R., Ramos C., Montaño M., Stricklin G., Raghu G. Production of collagenase and tissue inhibitor of metalloproteinases by fibroblasts derived from normal and fibrotic human lungs. Chest. 1992 Oct;102(4):1085–1089. doi: 10.1378/chest.102.4.1085. [DOI] [PubMed] [Google Scholar]
  62. Peppin G. J., Weiss S. J. Activation of the endogenous metalloproteinase, gelatinase, by triggered human neutrophils. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4322–4326. doi: 10.1073/pnas.83.12.4322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Petrequin P. R., Todd R. F., 3rd, Devall L. J., Boxer L. A., Curnutte J. T., 3rd Association between gelatinase release and increased plasma membrane expression of the Mo1 glycoprotein. Blood. 1987 Feb;69(2):605–610. [PubMed] [Google Scholar]
  64. Petty T. L. Protease mechanisms in the pathogenesis of acute lung injury. Ann N Y Acad Sci. 1991;624:267–277. doi: 10.1111/j.1749-6632.1991.tb17025.x. [DOI] [PubMed] [Google Scholar]
  65. Ponton A., Coulombe B., Skup D. Decreased expression of tissue inhibitor of metalloproteinases in metastatic tumor cells leading to increased levels of collagenase activity. Cancer Res. 1991 Apr 15;51(8):2138–2143. [PubMed] [Google Scholar]
  66. Pyke C., Ralfkiaer E., Huhtala P., Hurskainen T., Danø K., Tryggvason K. Localization of messenger RNA for Mr 72,000 and 92,000 type IV collagenases in human skin cancers by in situ hybridization. Cancer Res. 1992 Mar 1;52(5):1336–1341. [PubMed] [Google Scholar]
  67. Raghu G., Striker L. J., Hudson L. D., Striker G. E. Extracellular matrix in normal and fibrotic human lungs. Am Rev Respir Dis. 1985 Feb;131(2):281–289. doi: 10.1164/arrd.1985.131.2.281. [DOI] [PubMed] [Google Scholar]
  68. Roman J. R., McDonald J. A. Cellular processes in lung repair. Chest. 1991 Jul;100(1):245–248. doi: 10.1378/chest.100.1.245. [DOI] [PubMed] [Google Scholar]
  69. Salo T., Lyons J. G., Rahemtulla F., Birkedal-Hansen H., Larjava H. Transforming growth factor-beta 1 up-regulates type IV collagenase expression in cultured human keratinocytes. J Biol Chem. 1991 Jun 25;266(18):11436–11441. [PubMed] [Google Scholar]
  70. Sanchez-Lopez R., Nicholson R., Gesnel M. C., Matrisian L. M., Breathnach R. Structure-function relationships in the collagenase family member transin. J Biol Chem. 1988 Aug 25;263(24):11892–11899. [PubMed] [Google Scholar]
  71. Selman M., Montaño M., Ramos C., Chapela R. Concentration, biosynthesis and degradation of collagen in idiopathic pulmonary fibrosis. Thorax. 1986 May;41(5):355–359. doi: 10.1136/thx.41.5.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Selman M., Montaño M., Ramos C., Chapela R., González G., Vadillo F. Lung collagen metabolism and the clinical course of hypersensitivity pneumonitis. Chest. 1988 Aug;94(2):347–353. doi: 10.1378/chest.94.2.347. [DOI] [PubMed] [Google Scholar]
  73. Selman M., Pardo A., Barquín N., Sansores R., Ramírez R., Ramos C., Montaño M., Stricklin G. Collagenase and collagenase inhibitors in bronchoalveolar lavage fluids. Chest. 1991 Jul;100(1):151–155. doi: 10.1378/chest.100.1.151. [DOI] [PubMed] [Google Scholar]
  74. Soini Y., Päkkö P., Autio-Harmainen H. Genes of laminin B1 chain, alpha 1 (IV) chain of type IV collagen, and 72-kd type IV collagenase are mainly expressed by the stromal cells of lung carcinomas. Am J Pathol. 1993 May;142(5):1622–1630. [PMC free article] [PubMed] [Google Scholar]
  75. Stetler-Stevenson W. G., Brown P. D., Onisto M., Levy A. T., Liotta L. A. Tissue inhibitor of metalloproteinases-2 (TIMP-2) mRNA expression in tumor cell lines and human tumor tissues. J Biol Chem. 1990 Aug 15;265(23):13933–13938. [PubMed] [Google Scholar]
  76. Tetley T. D. New perspectives on basic mechanisms in lung disease. 6. Proteinase imbalance: its role in lung disease. Thorax. 1993 May;48(5):560–565. doi: 10.1136/thx.48.5.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Tryggvason K., Höyhtyä M., Pyke C. Type IV collagenases in invasive tumors. Breast Cancer Res Treat. 1993;24(3):209–218. doi: 10.1007/BF01833261. [DOI] [PubMed] [Google Scholar]
  78. Unemori E. N., Bouhana K. S., Werb Z. Vectorial secretion of extracellular matrix proteins, matrix-degrading proteinases, and tissue inhibitor of metalloproteinases by endothelial cells. J Biol Chem. 1990 Jan 5;265(1):445–451. [PubMed] [Google Scholar]
  79. Urbanski S. J., Edwards D. R., Maitland A., Leco K. J., Watson A., Kossakowska A. E. Expression of metalloproteinases and their inhibitors in primary pulmonary carcinomas. Br J Cancer. 1992 Dec;66(6):1188–1194. doi: 10.1038/bjc.1992.434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Van Wart H. E., Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5578–5582. doi: 10.1073/pnas.87.14.5578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Ward K., O'Connor C. M., Odlum C., Power C., Fitzgerald M. X. Pulmonary disease progress in sarcoid patients with and without bronchoalveolar lavage collagenase. Am Rev Respir Dis. 1990 Sep;142(3):636–641. doi: 10.1164/ajrccm/142.3.636. [DOI] [PubMed] [Google Scholar]
  82. Ward R. V., Atkinson S. J., Slocombe P. M., Docherty A. J., Reynolds J. J., Murphy G. Tissue inhibitor of metalloproteinases-2 inhibits the activation of 72 kDa progelatinase by fibroblast membranes. Biochim Biophys Acta. 1991 Aug 30;1079(2):242–246. doi: 10.1016/0167-4838(91)90132-j. [DOI] [PubMed] [Google Scholar]
  83. Weiland J. E., Davis W. B., Holter J. F., Mohammed J. R., Dorinsky P. M., Gadek J. E. Lung neutrophils in the adult respiratory distress syndrome. Clinical and pathophysiologic significance. Am Rev Respir Dis. 1986 Feb;133(2):218–225. doi: 10.1164/arrd.1986.133.2.218. [DOI] [PubMed] [Google Scholar]
  84. Weiland J. E., Garcia J. G., Davis W. B., Gadek J. E. Neutrophil collagenase in rheumatoid interstitial lung disease. J Appl Physiol (1985) 1987 Feb;62(2):628–633. doi: 10.1152/jappl.1987.62.2.628. [DOI] [PubMed] [Google Scholar]
  85. Wilder R. L., Lafyatis R., Roberts A. B., Case J. P., Kumkumian G. K., Sano H., Sporn M. B., Remmers E. F. Transforming growth factor-beta in rheumatoid arthritis. Ann N Y Acad Sci. 1990;593:197–207. doi: 10.1111/j.1749-6632.1990.tb16112.x. [DOI] [PubMed] [Google Scholar]
  86. Wilhelm S. M., Collier I. E., Marmer B. L., Eisen A. Z., Grant G. A., Goldberg G. I. SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem. 1989 Oct 15;264(29):17213–17221. [PubMed] [Google Scholar]
  87. Woessner J. F., Jr, Taplin C. J. Purification and properties of a small latent matrix metalloproteinase of the rat uterus. J Biol Chem. 1988 Nov 15;263(32):16918–16925. [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES