Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Oct 15;90(20):9557–9561. doi: 10.1073/pnas.90.20.9557

Mitochondrial DNA sequence evolution in the Arctoidea.

Y P Zhang 1, O A Ryder 1
PMCID: PMC47608  PMID: 8415740

Abstract

Some taxa in the superfamily Arctoidea, such as the giant panda and the lesser panda, have presented puzzles to taxonomists. In the present study, approximately 397 bases of the cytochrome b gene, 364 bases of the 12S rRNA gene, and 74 bases of the tRNA(Thr) and tRNA(Pro) genes from the giant panda, lesser panda, kinkajou, raccoon, coatimundi, and all species of the Ursidae were sequenced. The high transition/transversion ratios in cytochrome b and RNA genes prior to saturation suggest that the presumed transition bias may represent a trend for some mammalian lineages rather than strictly a primate phenomenon. Transversions in the 12S rRNA gene accumulate in arctoids at about half the rate reported for artiodactyls. Different arctoid lineages evolve at different rates: the kinkajou, a procyonid, evolves the fastest, 1.7-1.9 times faster than the slowest lineage that comprises the spectacled and polar bears. Generation-time effect can only partially explain the different rates of nucleotide substitution in arctoids. Our results based on parsimony analysis show that the giant panda is more closely related to bears than to the lesser panda; the lesser panda is neither closely related to bears nor to the New World procyonids. The kinkajou, raccoon, and coatimundi diverged from each other very early, even though they group together. The polar bear is closely related to the spectacled bear, and they began to diverge from a common mitochondrial ancestor approximately 2 million years ago. Relationships of the remaining five bear species are derived.

Full text

PDF
9559

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allard M. W., Honeycutt R. L. Nucleotide sequence variation in the mitochondrial 12S rRNA gene and the phylogeny of African mole-rats (Rodentia: Bathyergidae). Mol Biol Evol. 1992 Jan;9(1):27–40. doi: 10.1093/oxfordjournals.molbev.a040706. [DOI] [PubMed] [Google Scholar]
  2. Anderson S., de Bruijn M. H., Coulson A. R., Eperon I. C., Sanger F., Young I. G. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol. 1982 Apr 25;156(4):683–717. doi: 10.1016/0022-2836(82)90137-1. [DOI] [PubMed] [Google Scholar]
  3. Britten R. J., Kohne D. E. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science. 1968 Aug 9;161(3841):529–540. doi: 10.1126/science.161.3841.529. [DOI] [PubMed] [Google Scholar]
  4. Brown W. M., Prager E. M., Wang A., Wilson A. C. Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol. 1982;18(4):225–239. doi: 10.1007/BF01734101. [DOI] [PubMed] [Google Scholar]
  5. Coggin J. H., Jr Oncofetal antigens. 1986 Jan 30-Feb 5Nature. 319(6052):428–428. doi: 10.1038/319428c0. [DOI] [PubMed] [Google Scholar]
  6. Gutell R. R., Weiser B., Woese C. R., Noller H. F. Comparative anatomy of 16-S-like ribosomal RNA. Prog Nucleic Acid Res Mol Biol. 1985;32:155–216. doi: 10.1016/s0079-6603(08)60348-7. [DOI] [PubMed] [Google Scholar]
  7. Hixson J. E., Brown W. M. A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: sequence, structure, evolution, and phylogenetic implications. Mol Biol Evol. 1986 Jan;3(1):1–18. doi: 10.1093/oxfordjournals.molbev.a040379. [DOI] [PubMed] [Google Scholar]
  8. Hofmann O., Braunitzer G. The primary structure of the hemoglobin of spectacled bear (Tremarctos ornatus, Carnivora). Biol Chem Hoppe Seyler. 1987 Aug;368(8):949–954. doi: 10.1515/bchm3.1987.368.2.949. [DOI] [PubMed] [Google Scholar]
  9. Irwin D. M., Kocher T. D., Wilson A. C. Evolution of the cytochrome b gene of mammals. J Mol Evol. 1991 Feb;32(2):128–144. doi: 10.1007/BF02515385. [DOI] [PubMed] [Google Scholar]
  10. Janczewski D. N., Yuhki N., Gilbert D. A., Jefferson G. T., O'Brien S. J. Molecular phylogenetic inference from saber-toothed cat fossils of Rancho La Brea. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9769–9773. doi: 10.1073/pnas.89.20.9769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kocher T. D., Thomas W. K., Meyer A., Edwards S. V., Päbo S., Villablanca F. X., Wilson A. C. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6196–6200. doi: 10.1073/pnas.86.16.6196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lansman R. A., Shade R. O., Shapira J. F., Avise J. C. The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. III. Techniques and potential applications. J Mol Evol. 1981;17(4):214–226. doi: 10.1007/BF01732759. [DOI] [PubMed] [Google Scholar]
  13. Mayr E. Uncertainty in science: is the giant panda a bear or a raccoon? 1986 Oct 30-Nov 5Nature. 323(6091):769–771. doi: 10.1038/323769a0. [DOI] [PubMed] [Google Scholar]
  14. Nash W. G., O'Brien S. J. A comparative chromosome banding analysis of the Ursidae and their relationship to other carnivores. Cytogenet Cell Genet. 1987;45(3-4):206–212. doi: 10.1159/000132455. [DOI] [PubMed] [Google Scholar]
  15. O'Brien S. J., Nash W. G., Wildt D. E., Bush M. E., Benveniste R. E. A molecular solution to the riddle of the giant panda's phylogeny. Nature. 1985 Sep 12;317(6033):140–144. doi: 10.1038/317140a0. [DOI] [PubMed] [Google Scholar]
  16. Tagle D. A., Miyamoto M. M., Goodman M., Hofmann O., Braunitzer G., Göltenboth R., Jalanka H. Hemoglobin of pandas: phylogenetic relationships of carnivores as ascertained with protein sequence data. Naturwissenschaften. 1986 Aug;73(8):512–514. doi: 10.1007/BF00367205. [DOI] [PubMed] [Google Scholar]
  17. Wheeler W. C., Honeycutt R. L. Paired sequence difference in ribosomal RNAs: evolutionary and phylogenetic implications. Mol Biol Evol. 1988 Jan;5(1):90–96. doi: 10.1093/oxfordjournals.molbev.a040480. [DOI] [PubMed] [Google Scholar]
  18. Wu C. I., Li W. H. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1741–1745. doi: 10.1073/pnas.82.6.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zhang Y. P., Shi L. M. Riddle of the giant panda. Nature. 1991 Aug 15;352(6336):573–573. doi: 10.1038/352573a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES