Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Nov 15;90(22):10725–10729. doi: 10.1073/pnas.90.22.10725

Intragenic recombination at the human phosphoglucomutase 1 locus: predictions fulfilled.

N Takahashi 1, J V Neel 1
PMCID: PMC47850  PMID: 7902567

Abstract

In 1982, we advanced a phylogeny that attributed eight alleles of the phosphoglucomutase 1 locus (PGM1) to three independent mutations in a primal allele, followed by four intragenic recombination events involving these mutants [Takahashi, N., Neel, J. V., Satoh, C., Nishizaki, J. & Masunari, N. (1982) Proc. Natl. Acad. Sci. USA 79, 6636-6640]. The recent description of a cDNA probe for this locus [Whitehouse, D. B., Putt, W., Lovegrove, J. U., Morrison, K., Hollyoake, M., Fox, M. F., Hopkinson, D. A. & Edwards, Y. H. (1992) Proc. Natl. Acad. Sci. USA 89, 411-415] now renders it possible to test the validity of this phylogeny. cDNAs of PGM1 reverse-transcribed from mRNAs obtained from Japanese individuals possessing eight different electrophoretically defined alleles (PGM1*1+, PGM1*1-, PGM1*2+, PGM1*2-, PGM1*3+, PGM1*3-, PGM1*7+, PGM1*7-) were amplified by PCR and the sequences were determined. Only three different base substitutions were identified when PGM1*1+ was taken as the reference allele, as follows: an A to T transversion at residue 265, a C to T transition at residue 723, and a T to C transition at residue 1320. The second of these substitutions creates a Bgl II restriction enzyme site and the third creates a Nla III site. At the amino acid level, these substitutions alter amino acid 67 from Lys to Met, amino acid 220 from Arg to Cys, and amino acid 419 from Tyr to His, respectively. These mutations resulted in the electrophoretic properties defining PGM1*7+, the PGM1*2+, and the PGM1*1- alleles, respectively. Subsequent intragenic recombinational events resulted in the remaining four alleles. For two of these latter alleles (PGM1*7- and PGM1*3-), more than one type of intragenic crossover can produce the allele. These findings verify the predicted phylogeny and provide a case study in the evolution of complexity at a genetic locus.

Full text

PDF
10728

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bark J. E., Harris M. J., Firth M. Typing of the common phosphoglucomutase variants using isoelectric focusing--a new interpretation of the phosphoglucomutase system. J Forensic Sci Soc. 1976 Apr;16(2):115–120. doi: 10.1016/s0015-7368(76)71042-9. [DOI] [PubMed] [Google Scholar]
  2. Blake N. M., Omoto K. Phosphoglucomutase types in the Asian-Pacific area: a critical reveiw including new phenotypes. Ann Hum Genet. 1975 Jan;38(3):251–273. doi: 10.1111/j.1469-1809.1975.tb00610.x. [DOI] [PubMed] [Google Scholar]
  3. Carter N. D., West C. M., Emes E., Parkin B., Marshall W. H. Phosphoglucomutase polymorphism detected by isoelectric focusing: gene frequencies, evolution and linkage. Ann Hum Biol. 1979 May-Jun;6(3):221–230. doi: 10.1080/03014467900007222. [DOI] [PubMed] [Google Scholar]
  4. Hiyama K., Kodaira M., Satoh C. Detection of deletions, insertions and single nucleotide substitutions in cloned beta-globin genes and new polymorphic nucleotide substitutions in beta-globin genes in a Japanese population using ribonuclease cleavage at mismatches in RNA:DNA duplexes. Mutat Res. 1990 Aug;231(2):219–231. doi: 10.1016/0027-5107(90)90028-3. [DOI] [PubMed] [Google Scholar]
  5. Kühnl P., Schmidtmann U., Spielmann W. Evidence for two additional common alleles at the PGM1 locus (phosphoglucomutase--E.C.: 2.7.5.1). A comparison by three different techniques. Hum Genet. 1977 Feb 11;35(2):219–223. doi: 10.1007/BF00393973. [DOI] [PubMed] [Google Scholar]
  6. Neel J. V., Satoh C., Goriki K., Asakawa J., Fujita M., Takahashi N., Kageoka T., Hazama R. Search for mutations altering protein charge and/or function in children of atomic bomb survivors: final report. Am J Hum Genet. 1988 May;42(5):663–676. [PMC free article] [PubMed] [Google Scholar]
  7. Neel J. V., Satoh C., Smouse P., Asakawa J., Takahashi N., Goriki K., Fujita M., Kageoka T., Hazama R. Protein variants in Hiroshima and Nagasaki: tales of two cities. Am J Hum Genet. 1988 Dec;43(6):870–893. [PMC free article] [PubMed] [Google Scholar]
  8. Satoh C., Takahashi N., Kaneko J., Kimura Y., Fujita M., Asakawa J., Kageoka T., Goriki K., Hazama R. Electrophoretic variants of blood proteins in Japanese. II. Phosphoglucomutase-1 (PGM1). Jinrui Idengaku Zasshi. 1984 Sep;29(3):287–310. doi: 10.1007/BF01871246. [DOI] [PubMed] [Google Scholar]
  9. Satoh C., Ueda N., Horai S., Omoto K. Further studies on phosphoglucomutase-1 phenotypes in Japanese. i. Comparison of "slow" variants. Jinrui Idengaku Zasshi. 1976 Sep;21(2):85–96. [PubMed] [Google Scholar]
  10. Takahashi N., Neel J. V., Satoh C., Nishizaki J., Masunari N. A phylogeny for the principal alleles of the human phosphoglucomutase-1 locus. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6636–6640. doi: 10.1073/pnas.79.21.6636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Whitehouse D. B., Putt W., Lovegrove J. U., Morrison K., Hollyoake M., Fox M. F., Hopkinson D. A., Edwards Y. H. Phosphoglucomutase 1: complete human and rabbit mRNA sequences and direct mapping of this highly polymorphic marker on human chromosome 1. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):411–415. doi: 10.1073/pnas.89.1.411. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES