Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Dec 1;90(23):10937–10941. doi: 10.1073/pnas.90.23.10937

Cytokinin stimulates dihydropyridine-sensitive calcium uptake in moss protoplasts.

K S Schumaker 1, M J Gizinski 1
PMCID: PMC47896  PMID: 7504288

Abstract

Ca2+ influx through dihydropyridine (DHP)-sensitive Ca2+ channels is thought to be an early event in cytokinin-induced bud formation in moss protonema because DHP antagonists inhibit bud formation in the presence of cytokinin and DHP agonists stimulate bud formation in the absence of cytokinin [Conrad, P. A. & Helper, P. K. (1988) Plant Physiol. 86, 684-687]. In the present study, we established the presence of a DHP-sensitive Ca2+ transport system by measuring 45Ca2+ influx into moss protoplasts. Ca2+ influx was stimulated by external KCl (up to 5 mM), indicating that transport is voltage-dependent. K(+)-induced Ca2+ influx was DHP-sensitive with > 50% inhibition at 500 nM nifedipine. Ca2+ influx was stimulated by increasing concentrations of the DHP Ca2+ channel agonist Bay K8644 with half-maximal effects at 25 nM; this stimulation was seen only in the absence of K+, suggesting that the agonist works preferentially on polarized membranes. Ca2+ influx was also inhibited by phenylalkylamines (verapamil) and benzothiazepines (diltiazem). The phytohormone 6-benzylaminopurine consistently stimulated Ca2+ influx with a Km value of 1 nM, whereas adenine, indoleacetic acid, and gibberellic acid had no effect on Ca2+ transport. The cytokinins kinetin and trans-zeatin caused a greater stimulation of Ca2+ influx and induced more bud formation than did 6-benzylaminopurine. These results indicate that Ca2+ is taken up into moss protoplasts through voltage-dependent DHP-sensitive Ca2+ channels on the plasma membrane and that one of the cytokinin effects in the induction of bud formation is regulation of this plasma membrane Ca2+ channel.

Full text

PDF
10938

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brandes H., Kende H. Studies on cytokinin-controlled bud formation in moss protonemata. Plant Physiol. 1968 May;43(5):827–837. doi: 10.1104/pp.43.5.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Briskin D. P., Poole R. J. Plasma membrane ATPase of red beet forms a phosphorylated intermediate. Plant Physiol. 1983 Mar;71(3):507–512. doi: 10.1104/pp.71.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bush D. R., Sze H. Calcium transport in tonoplast and endoplasmic reticulum vesicles isolated from cultured carrot cells. Plant Physiol. 1986 Feb;80(2):549–555. doi: 10.1104/pp.80.2.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen T. L., Wolniak S. M. Mitotic progression in stamen hair cells of Tradescantia is accelerated by treatment with ruthenium red and Bay K-8644. Eur J Cell Biol. 1987 Dec;45(1):16–22. [PubMed] [Google Scholar]
  5. Cognard C., Romey G., Galizzi J. P., Fosset M., Lazdunski M. Dihydropyridine-sensitive Ca2+ channels in mammalian skeletal muscle cells in culture: electrophysiological properties and interactions with Ca2+ channel activator (Bay K8644) and inhibitor (PN 200-110). Proc Natl Acad Sci U S A. 1986 Mar;83(5):1518–1522. doi: 10.1073/pnas.83.5.1518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Conrad P. A., Hepler P. K. The effect of 1,4-dihydropyridines on the initiation and development of gametophore buds in the moss funaria. Plant Physiol. 1988 Mar;86(3):684–687. doi: 10.1104/pp.86.3.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Desnuelle C., Askanas V., Engel W. K. Dihydropyridine-sensitive Ca2+ channel in aneurally cultured human muscles. Relationship between high-affinity binding site and inhibition of calcium uptake. FEBS Lett. 1988 Mar 28;230(1-2):95–100. doi: 10.1016/0014-5793(88)80649-5. [DOI] [PubMed] [Google Scholar]
  8. Gilroy S., Jones R. L. Gibberellic acid and abscisic acid coordinately regulate cytoplasmic calcium and secretory activity in barley aleurone protoplasts. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3591–3595. doi: 10.1073/pnas.89.8.3591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gross J., Marmé D. ATP-dependent Ca uptake into plant membrane vesicles. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1232–1236. doi: 10.1073/pnas.75.3.1232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hahm S. H., Saunders M. J. Cytokinin increases intracellular Ca2+ in Funaria: detection with Indo-1. Cell Calcium. 1991 Nov;12(10):675–681. doi: 10.1016/0143-4160(91)90037-f. [DOI] [PubMed] [Google Scholar]
  11. Hof R. P., Rüegg U. T., Hof A., Vogel A. Stereoselectivity at the calcium channel: opposite action of the enantiomers of a 1,4-dihydropyridine. J Cardiovasc Pharmacol. 1985 Jul-Aug;7(4):689–693. doi: 10.1097/00005344-198507000-00012. [DOI] [PubMed] [Google Scholar]
  12. Hosey M. M., Lazdunski M. Calcium channels: molecular pharmacology, structure and regulation. J Membr Biol. 1988 Sep;104(2):81–105. doi: 10.1007/BF01870922. [DOI] [PubMed] [Google Scholar]
  13. Lazdunski M., Barhanin J., Borsotto M., Fosset M., Galizzi J. P., Renaud J. F., Romey G., Schmid A. Dihydropyridine-sensitive Ca2+ channels: molecular properties of interaction with Ca2+ channel blockers, purification, subunit structure, and differentiation. J Cardiovasc Pharmacol. 1986;8 (Suppl 8):S13–S19. [PubMed] [Google Scholar]
  14. Miller R. J. Voltage-sensitive Ca2+ channels. J Biol Chem. 1992 Jan 25;267(3):1403–1406. [PubMed] [Google Scholar]
  15. Reid R. J., Smith F. A. Regulation of Calcium Influx in Chara: Effects of K, pH, Metabolic Inhibition, and Calcium Channel Blockers. Plant Physiol. 1992 Oct;100(2):637–643. doi: 10.1104/pp.100.2.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Renaud J. F., Méaux J. P., Romey G., Schmid A., Lazdunski M. Activation of the voltage-dependent Ca2+ channel in rat heart cells by dihydropyridine derivatives. Biochem Biophys Res Commun. 1984 Nov 30;125(1):405–412. doi: 10.1016/s0006-291x(84)80382-4. [DOI] [PubMed] [Google Scholar]
  17. SLAYMAN C. W., TATUM E. L. POTASSIUM TRANSPORT IN NEUROSPORA. I. INTRACELLULAR SODIUM AND POTASSIUM CONCENTRATIONS, AND CATION REQUIREMENTS FOR GROWTH. Biochim Biophys Acta. 1964 Nov 29;88:578–592. [PubMed] [Google Scholar]
  18. Saunders M. J., Hepler P. K. Calcium antagonists and calmodulin inhibitors block cytokinin-induced bud formation in Funaria. Dev Biol. 1983 Sep;99(1):41–49. doi: 10.1016/0012-1606(83)90252-x. [DOI] [PubMed] [Google Scholar]
  19. Saunders M. J., Hepler P. K. Calcium ionophore a23187 stimulates cytokinin-like mitosis in funaria. Science. 1982 Sep 3;217(4563):943–945. doi: 10.1126/science.217.4563.943. [DOI] [PubMed] [Google Scholar]
  20. Schumaker K. S., Sze H. A Ca/H Antiport System Driven by the Proton Electrochemical Gradient of a Tonoplast H-ATPase from Oat Roots. Plant Physiol. 1985 Dec;79(4):1111–1117. doi: 10.1104/pp.79.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schumaker K. S., Sze H. Calcium transport into the vacuole of oat roots. Characterization of H+/Ca2+ exchange activity. J Biol Chem. 1986 Sep 15;261(26):12172–12178. [PubMed] [Google Scholar]
  22. Schwartz A., Triggle D. J. Cellular action of calcium channel blocking drugs. Annu Rev Med. 1984;35:325–339. doi: 10.1146/annurev.me.35.020184.001545. [DOI] [PubMed] [Google Scholar]
  23. Slayman C. L. Electrical properties of Neurospora crassa. Effects of external cations on the intracellular potential. J Gen Physiol. 1965 Sep;49(1):69–92. doi: 10.1085/jgp.49.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Thuleau P., Graziana A., Ranjeva R., Schroeder J. I. Solubilized proteins from carrot (Daucus carota L.) membranes bind calcium channel blockers and form calcium-permeable ion channels. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):765–769. doi: 10.1073/pnas.90.2.765. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES