Abstract
A monoclonal antibody produced against the human erythrocyte plasma membrane calcium pump (PMCA) was shown to react immunohistochemically with an epitope of the PMCA in avian and mammalian cerebellum. Western blot analysis of purified synaptosomes and homogenates from avian cerebellum revealed major immunoreactive proteins with molecular masses (130 kDa and 138 kDa) similar to those of purified erythrocyte PMCA. Dual-imaging confocal immunofluorescence microscopy of avian cerebellum showed that the PMCA antibody stained the periphery of the soma whereas calbindin-D28k was located in the cytosol. PMCA heavily stained the more distal dendrites of the Purkinje cells and, within the resolution of the fluorescence procedure, colocalized with calbindin-D28k. By using alkaline phosphatase-conjugated second antibody, PMCA was again localized to the peripheral soma, to a segmental pattern in dendrites, and to presumed spiny elements. The soma periphery and dendrites of Purkinje cells of the rat cerebellum were also prominently stained with anti-PMCA antibody and compared to parvalbumin localization. Dendritic depolarization and dendritic spiking behavior are significant Ca(2+)-dependent events of Purkinje cells. The rapid decline of intracellular free Ca2+ after the rapid rise time of Ca2+ transients is considered to be due to sequestration by Ca2+ buffers, uptake by intracellular stores, and Ca2+ extrusion mechanisms, the latter a function of PMCA now shown immunohistochemically to be a prominent feature of Purkinje cell dendrites.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Batchelor A. M., Garthwaite J. Novel synaptic potentials in cerebellar Purkinje cells: probable mediation by metabotropic glutamate receptors. Neuropharmacology. 1993 Jan;32(1):11–20. doi: 10.1016/0028-3908(93)90124-l. [DOI] [PubMed] [Google Scholar]
- Blackstone C. D., Supattapone S., Snyder S. H. Inositolphospholipid-linked glutamate receptors mediate cerebellar parallel-fiber-Purkinje-cell synaptic transmission. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4316–4320. doi: 10.1073/pnas.86.11.4316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Booth R. F., Clark J. B. A rapid method for the preparation of relatively pure metabolically competent synaptosomes from rat brain. Biochem J. 1978 Nov 15;176(2):365–370. doi: 10.1042/bj1760365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borke J. L., Caride A. J., Yaksh T. L., Penniston J. T., Kumar R. Cerebrospinal fluid calcium homeostasis: evidence for a plasma membrane Ca2+-pump in mammalian choroid plexus. Brain Res. 1989 Jun 12;489(2):355–360. doi: 10.1016/0006-8993(89)90870-6. [DOI] [PubMed] [Google Scholar]
- Borke J. L., Caride A., Verma A. K., Kelley L. K., Smith C. H., Penniston J. T., Kumar R. Calcium pump epitopes in placental trophoblast basal plasma membranes. Am J Physiol. 1989 Aug;257(2 Pt 1):c341–c346. doi: 10.1152/ajpcell.1989.257.2.C341. [DOI] [PubMed] [Google Scholar]
- Borke J. L., Caride A., Verma A. K., Penniston J. T., Kumar R. Cellular and segmental distribution of Ca2(+)-pump epitopes in rat intestine. Pflugers Arch. 1990 Sep;417(1):120–122. doi: 10.1007/BF00370781. [DOI] [PubMed] [Google Scholar]
- Borke J. L., Caride A., Verma A. K., Penniston J. T., Kumar R. Plasma membrane calcium pump and 28-kDa calcium binding protein in cells of rat kidney distal tubules. Am J Physiol. 1989 Nov;257(5 Pt 2):F842–F849. doi: 10.1152/ajprenal.1989.257.5.F842. [DOI] [PubMed] [Google Scholar]
- Borke J. L., Minami J., Verma A. K., Penniston J. T., Kumar R. Co-localization of erythrocyte Ca++-Mg++ ATPase and vitamin D-dependent 28-kDa-calcium binding protein. Kidney Int. 1988 Aug;34(2):262–267. doi: 10.1038/ki.1988.174. [DOI] [PubMed] [Google Scholar]
- Borke J. L., Minami J., Verma A., Penniston J. T., Kumar R. Monoclonal antibodies to human erythrocyte membrane Ca++-Mg++ adenosine triphosphatase pump recognize an epitope in the basolateral membrane of human kidney distal tubule cells. J Clin Invest. 1987 Nov;80(5):1225–1231. doi: 10.1172/JCI113196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carafoli E. The calcium pumping ATPase of the plasma membrane. Annu Rev Physiol. 1991;53:531–547. doi: 10.1146/annurev.ph.53.030191.002531. [DOI] [PubMed] [Google Scholar]
- Celio M. R. Calcium binding proteins in the brain. Arch Ital Anat Embriol. 1989 Jul-Sep;94(3):227–236. [PubMed] [Google Scholar]
- Feher J. J., Fullmer C. S., Wasserman R. H. Role of facilitated diffusion of calcium by calbindin in intestinal calcium absorption. Am J Physiol. 1992 Feb;262(2 Pt 1):C517–C526. doi: 10.1152/ajpcell.1992.262.2.C517. [DOI] [PubMed] [Google Scholar]
- Greeb J., Shull G. E. Molecular cloning of a third isoform of the calmodulin-sensitive plasma membrane Ca2+-transporting ATPase that is expressed predominantly in brain and skeletal muscle. J Biol Chem. 1989 Nov 5;264(31):18569–18576. [PubMed] [Google Scholar]
- Iacopino A. M., Rhoten W. B., Christakos S. Calcium binding protein (calbindin-D28k) gene expression in the developing and aging mouse cerebellum. Brain Res Mol Brain Res. 1990 Oct;8(4):283–290. doi: 10.1016/0169-328x(90)90041-b. [DOI] [PubMed] [Google Scholar]
- Jande S. S., Tolnai S., Lawson D. E. Immunohistochemical localization of vitamin D-dependent calcium-binding protein in duodenum, kidney, uterus and cerebellum of chickens. Histochemistry. 1981;71(1):99–116. doi: 10.1007/BF00592574. [DOI] [PubMed] [Google Scholar]
- Kaprielian Z., Campbell A. M., Fambrough D. M. Identification of a Ca2+-ATPase in cerebellar Purkinje cells. Brain Res Mol Brain Res. 1989 Jul;6(1):55–60. doi: 10.1016/0169-328x(89)90028-4. [DOI] [PubMed] [Google Scholar]
- Kosk-Kosicka D., Bzdega T., Wawrzynow A. Fluorescence energy transfer studies of purified erythrocyte Ca2+-ATPase. Ca2+-regulated activation by oligomerization. J Biol Chem. 1989 Nov 25;264(33):19495–19499. [PubMed] [Google Scholar]
- Kuwajima G., Futatsugi A., Niinobe M., Nakanishi S., Mikoshiba K. Two types of ryanodine receptors in mouse brain: skeletal muscle type exclusively in Purkinje cells and cardiac muscle type in various neurons. Neuron. 1992 Dec;9(6):1133–1142. doi: 10.1016/0896-6273(92)90071-k. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lledo P. M., Somasundaram B., Morton A. J., Emson P. C., Mason W. T. Stable transfection of calbindin-D28k into the GH3 cell line alters calcium currents and intracellular calcium homeostasis. Neuron. 1992 Nov;9(5):943–954. doi: 10.1016/0896-6273(92)90246-a. [DOI] [PubMed] [Google Scholar]
- Llinás R., Sugimori M. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol. 1980 Aug;305:197–213. doi: 10.1113/jphysiol.1980.sp013358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattson M. P., Rychlik B., Chu C., Christakos S. Evidence for calcium-reducing and excito-protective roles for the calcium-binding protein calbindin-D28k in cultured hippocampal neurons. Neuron. 1991 Jan;6(1):41–51. doi: 10.1016/0896-6273(91)90120-o. [DOI] [PubMed] [Google Scholar]
- Michaelis E. K., Michaelis M. L., Chang H. H., Kitos T. E. High affinity Ca2+-stimulated Mg2+-dependent ATPase in rat brain synaptosomes, synaptic membranes, and microsomes. J Biol Chem. 1983 May 25;258(10):6101–6108. [PubMed] [Google Scholar]
- Miller K. K., Verma A., Snyder S. H., Ross C. A. Localization of an endoplasmic reticulum calcium ATPase mRNA in rat brain by in situ hybridization. Neuroscience. 1991;43(1):1–9. doi: 10.1016/0306-4522(91)90410-p. [DOI] [PubMed] [Google Scholar]
- Minakami R., Hirose E., Yoshioka K., Yoshimura R., Misumi Y., Sakaki Y., Tohyama M., Kiyama H., Sugiyama H. Postnatal development of mRNA specific for a metabotropic glutamate receptor in the rat brain. Neurosci Res. 1992 Oct;15(1-2):58–63. doi: 10.1016/0168-0102(92)90017-7. [DOI] [PubMed] [Google Scholar]
- Nagy A., Shuster T. A., Rosenberg M. D. Adenosine triphosphatase activity at the external surface of chicken brain synaptosomes. J Neurochem. 1983 Jan;40(1):226–234. doi: 10.1111/j.1471-4159.1983.tb12675.x. [DOI] [PubMed] [Google Scholar]
- Niggli V., Penniston J. T., Carafoli E. Purification of the (Ca2+-Mg2+)-ATPase from human erythrocyte membranes using a calmodulin affinity column. J Biol Chem. 1979 Oct 25;254(20):9955–9958. [PubMed] [Google Scholar]
- Reisner P. D., Christakos S., Vanaman T. C. In vitro enzyme activation with calbindin-D28k, the vitamin D-dependent 28 kDa calcium binding protein. FEBS Lett. 1992 Feb 3;297(1-2):127–131. doi: 10.1016/0014-5793(92)80342-e. [DOI] [PubMed] [Google Scholar]
- Ross C. A., Bredt D., Snyder S. H. Messenger molecules in the cerebellum. Trends Neurosci. 1990 Jun;13(6):216–222. doi: 10.1016/0166-2236(90)90163-5. [DOI] [PubMed] [Google Scholar]
- Stahl W. L., Eakin T. J., Owens J. W., Jr, Breininger J. F., Filuk P. E., Anderson W. R. Plasma membrane Ca(2+)-ATPase isoforms: distribution of mRNAs in rat brain by in situ hybridization. Brain Res Mol Brain Res. 1992 Dec;16(3-4):223–231. doi: 10.1016/0169-328x(92)90229-5. [DOI] [PubMed] [Google Scholar]
- Sugimori M., Llinás R. R. Real-time imaging of calcium influx in mammalian cerebellar Purkinje cells in vitro. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5084–5088. doi: 10.1073/pnas.87.13.5084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takei K., Stukenbrok H., Metcalf A., Mignery G. A., Südhof T. C., Volpe P., De Camilli P. Ca2+ stores in Purkinje neurons: endoplasmic reticulum subcompartments demonstrated by the heterogeneous distribution of the InsP3 receptor, Ca(2+)-ATPase, and calsequestrin. J Neurosci. 1992 Feb;12(2):489–505. doi: 10.1523/JNEUROSCI.12-02-00489.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tank D. W., Sugimori M., Connor J. A., Llinás R. R. Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. Science. 1988 Nov 4;242(4879):773–777. doi: 10.1126/science.2847315. [DOI] [PubMed] [Google Scholar]
- Taylor A. N. Intestinal vitamin D-induced calcium-binding protein: time-course of immunocytological localization following 1,25-dihydroxyvitamin D3. J Histochem Cytochem. 1983 Mar;31(3):426–432. doi: 10.1177/31.3.6687473. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Volpe P., Alderson-Lang B. H., Madeddu L., Damiani E., Collins J. H., Margreth A. Calsequestrin, a component of the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of chicken cerebellum. Neuron. 1990 Nov;5(5):713–721. doi: 10.1016/0896-6273(90)90225-5. [DOI] [PubMed] [Google Scholar]
- Vorherr T., Kessler T., Hofmann F., Carafoli E. The calmodulin-binding domain mediates the self-association of the plasma membrane Ca2+ pump. J Biol Chem. 1991 Jan 5;266(1):22–27. [PubMed] [Google Scholar]
- Walters J. R. Calbindin-D9k stimulates the calcium pump in rat enterocyte basolateral membranes. Am J Physiol. 1989 Jan;256(1 Pt 1):G124–G128. doi: 10.1152/ajpgi.1989.256.1.G124. [DOI] [PubMed] [Google Scholar]
- Wasserman R. H., Chandler J. S., Meyer S. A., Smith C. A., Brindak M. E., Fullmer C. S., Penniston J. T., Kumar R. Intestinal calcium transport and calcium extrusion processes at the basolateral membrane. J Nutr. 1992 Mar;122(3 Suppl):662–671. doi: 10.1093/jn/122.suppl_3.662. [DOI] [PubMed] [Google Scholar]
- Wasserman R. H., Smith C. A., Brindak M. E., De Talamoni N., Fullmer C. S., Penniston J. T., Kumar R. Vitamin D and mineral deficiencies increase the plasma membrane calcium pump of chicken intestine. Gastroenterology. 1992 Mar;102(3):886–894. doi: 10.1016/0016-5085(92)90174-w. [DOI] [PubMed] [Google Scholar]
- Wasserman R. H., Smith C. A., Smith C. M., Brindak M. E., Fullmer C. S., Krook L., Penniston J. T., Kumar R. Immunohistochemical localization of a calcium pump and calbindin-D28k in the oviduct of the laying hen. Histochemistry. 1991;96(5):413–418. doi: 10.1007/BF00315999. [DOI] [PubMed] [Google Scholar]