Skip to main content
British Heart Journal logoLink to British Heart Journal
. 1985 Apr;53(4):388–393. doi: 10.1136/hrt.53.4.388

Effect of timolol on changes in serum potassium concentration during acute myocardial infarction.

J E Nordrehaug, K A Johannessen, G von der Lippe, M Sederholm, P Grøttum, J Kjekshus
PMCID: PMC481777  PMID: 3885979

Abstract

One hundred and six patients with acute myocardial infarction admitted to hospital within four hours after the onset of symptoms were randomised to treatment with intravenous timolol (54 patients) or placebo (52 patients). Serum potassium concentrations were estimated at frequent intervals during the first 24 hours of admission. Patients in both treatment groups, who did not receive subsequent diuretic treatment, had a transient rise in serum potassium concentration, which was maximal after four hours. This rise was abolished by diuretic treatment in the placebo group but not in the timolol group, in which there was a pronounced and prolonged rise in serum potassium concentration. The change in serum potassium concentration in the first four hours after admission correlated with cumulative creatine kinase release in the placebo group, but not in the timolol group. Hypokalaemia (serum potassium concentration less than or equal to 3.5 mmol/l) occurred in 15 (28.8%) patients in the placebo group and in seven (13%) in the timolol group and was independent of infarct size. The frequency of hyperkalaemia was not increased in the timolol group. By increasing the serum potassium concentration and preventing hypokalaemia, the use of intravenous timolol early in acute myocardial infarction may have important clinical effects in addition to reducing infarct size.

Full text

PDF
392

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck O. A., Hochrein H. Serumkaliumspiegel und Herzrhythmusstörungen beim akuten Myokardinfarkt. Z Kardiol. 1977 Apr;66(4):187–190. [PubMed] [Google Scholar]
  2. Brown M. J., Brown D. C., Murphy M. B. Hypokalemia from beta2-receptor stimulation by circulating epinephrine. N Engl J Med. 1983 Dec 8;309(23):1414–1419. doi: 10.1056/NEJM198312083092303. [DOI] [PubMed] [Google Scholar]
  3. Case R. B., Nasser M. G., Crampton R. S. Biochemical aspects of early myocardial ischemia. Am J Cardiol. 1969 Dec;24(6):766–775. doi: 10.1016/0002-9149(69)90465-2. [DOI] [PubMed] [Google Scholar]
  4. Dyckner T., Helmers C., Lundman T., Wester P. O. Initial serum potassium level in relation to early complications and prognosis in patients with acute myocardial infarction. Acta Med Scand. 1975 Mar;197(3):207–210. doi: 10.1111/j.0954-6820.1975.tb04903.x. [DOI] [PubMed] [Google Scholar]
  5. Epstein F. H., Rosa R. M. Adrenergic control of serum potassium. N Engl J Med. 1983 Dec 8;309(23):1450–1451. doi: 10.1056/NEJM198312083092308. [DOI] [PubMed] [Google Scholar]
  6. Fisch C. Relation of electrolyte disturbances to cardiac arrhythmias. Circulation. 1973 Feb;47(2):408–419. doi: 10.1161/01.cir.47.2.408. [DOI] [PubMed] [Google Scholar]
  7. Karlsberg R. P., Cryer P. E., Roberts R. Serial plasma catecholamine response early in the course of clinical acute myocardial infarction: relationship to infarct extent and mortality. Am Heart J. 1981 Jul;102(1):24–29. doi: 10.1016/0002-8703(81)90408-7. [DOI] [PubMed] [Google Scholar]
  8. Nordrehaug J. E., von der Lippe G. Hypokalaemia and ventricular fibrillation in acute myocardial infarction. Br Heart J. 1983 Dec;50(6):525–529. doi: 10.1136/hrt.50.6.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rosa R. M., Silva P., Young J. B., Landsberg L., Brown R. S., Rowe J. W., Epstein F. H. Adrenergic modulation of extrarenal potassium disposal. N Engl J Med. 1980 Feb 21;302(8):431–434. doi: 10.1056/NEJM198002213020803. [DOI] [PubMed] [Google Scholar]
  10. Steiness E. Negative potassium balance during beta-blocker treatment of hypertension. Clin Pharmacol Ther. 1982 Jun;31(6):691–694. doi: 10.1038/clpt.1982.97. [DOI] [PubMed] [Google Scholar]
  11. Struthers A. D., Reid J. L., Whitesmith R., Rodger J. C. Effect of intravenous adrenaline on electrocardiogram, blood pressure, and serum potassium. Br Heart J. 1983 Jan;49(1):90–93. doi: 10.1136/hrt.49.1.90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Struthers A. D., Reid J. L., Whitesmith R., Rodger J. C. The effects of cardioselective and non-selective beta-adrenoceptor blockade on the hypokalaemic and cardiovascular responses to adrenomedullary hormones in man. Clin Sci (Lond) 1983 Aug;65(2):143–147. doi: 10.1042/cs0650143. [DOI] [PubMed] [Google Scholar]
  13. Todd E. P., Vick R. L. Kalemotropic effect of epinephrine: analysis with adrenergic agonists and antagonists. Am J Physiol. 1971 Jun;220(6):1964–1969. doi: 10.1152/ajplegacy.1971.220.6.1964. [DOI] [PubMed] [Google Scholar]
  14. Webb S. C., Rickards A. F., Poole-Wilson P. A. Coronary sinus potassium concentration recorded during coronary angioplasty. Br Heart J. 1983 Aug;50(2):146–148. doi: 10.1136/hrt.50.2.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Yusuf S., Ramsdale D., Peto R., Furse L., Bennett D., Bray C., Sleight P. Early intravenous atenolol treatment in suspected acute myocardial infarction. Preliminary report of a randomised trial. Lancet. 1980 Aug 9;2(8189):273–276. doi: 10.1016/s0140-6736(80)90231-7. [DOI] [PubMed] [Google Scholar]

Articles from British Heart Journal are provided here courtesy of BMJ Publishing Group

RESOURCES