Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1995 Oct;59(4):427–431. doi: 10.1136/jnnp.59.4.427

Increased interictal cerebral glucose metabolism in a cortical-subcortical network in drug naive patients with cryptogenic temporal lobe epilepsy.

M Franceschi 1, G Lucignani 1, A Del Sole 1, C Grana 1, S Bressi 1, F Minicucci 1, C Messa 1, M P Canevini 1, F Fazio 1
PMCID: PMC486081  PMID: 7561924

Abstract

Positron emission tomography with [18F]-2-fluoro-2-deoxy-D-glucose ([18F]FDG) has been used to assess the pattern of cerebral metabolism in different types of epilepsies. However, PET with [18F]FDG has never been used to evaluate drug naive patients with cryptogenic temporal lobe epilepsy, in whom the mechanism of origin and diffusion of the epileptic discharge may differ from that underlying other epilepsies. In a group of patients with cryptogenic temporal lobe epilepsy, never treated with antiepileptic drugs, evidence has been found of significant interictal glucose hypermetabolism in a bilateral neural network including the temporal lobes, thalami, basal ganglia, and cingular cortices. The metabolism in these areas and frontal lateral cortex enables the correct classification of all patients with temporal lobe epilepsy and controls by discriminant function analysis. Other cortical areas--namely, frontal basal and lateral, temporal mesial, and cerebellar cortices--had bilateral increases of glucose metabolism ranging from 10 to 15% of normal controls, although lacking stringent statistical significance. This metabolic pattern could represent a pathophysiological state of hyperactivity predisposing to epileptic discharge generation or diffusion, or else a network of inhibitory circuits activated to prevent the diffusion of the epileptic discharge.

Full text

PDF
430

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chugani H. T., Mazziotta J. C., Engel J., Jr, Phelps M. E. The Lennox-Gastaut syndrome: metabolic subtypes determined by 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography. Ann Neurol. 1987 Jan;21(1):4–13. doi: 10.1002/ana.410210104. [DOI] [PubMed] [Google Scholar]
  2. Chugani H. T., Shewmon D. A., Khanna S., Phelps M. E. Interictal and postictal focal hypermetabolism on positron emission tomography. Pediatr Neurol. 1993 Jan-Feb;9(1):10–15. doi: 10.1016/0887-8994(93)90003-u. [DOI] [PubMed] [Google Scholar]
  3. Chugani H. T., Shewmon D. A., Peacock W. J., Shields W. D., Mazziotta J. C., Phelps M. E. Surgical treatment of intractable neonatal-onset seizures: the role of positron emission tomography. Neurology. 1988 Aug;38(8):1178–1188. doi: 10.1212/wnl.38.8.1178. [DOI] [PubMed] [Google Scholar]
  4. Chugani H. T., Shewmon D. A., Sankar R., Chen B. C., Phelps M. E. Infantile spasms: II. Lenticular nuclei and brain stem activation on positron emission tomography. Ann Neurol. 1992 Feb;31(2):212–219. doi: 10.1002/ana.410310212. [DOI] [PubMed] [Google Scholar]
  5. Engel J., Jr, Henry T. R., Risinger M. W., Mazziotta J. C., Sutherling W. W., Levesque M. F., Phelps M. E. Presurgical evaluation for partial epilepsy: relative contributions of chronic depth-electrode recordings versus FDG-PET and scalp-sphenoidal ictal EEG. Neurology. 1990 Nov;40(11):1670–1677. doi: 10.1212/wnl.40.11.1670. [DOI] [PubMed] [Google Scholar]
  6. Engel J., Jr, Kuhl D. E., Phelps M. E. Patterns of human local cerebral glucose metabolism during epileptic seizures. Science. 1982 Oct 1;218(4567):64–66. doi: 10.1126/science.6981843. [DOI] [PubMed] [Google Scholar]
  7. Engel J., Jr, Kuhl D. E., Phelps M. E., Rausch R., Nuwer M. Local cerebral metabolism during partial seizures. Neurology. 1983 Apr;33(4):400–413. doi: 10.1212/wnl.33.4.400. [DOI] [PubMed] [Google Scholar]
  8. Franceschi M., Triulzi F., Ferini-Strambi L., Giusti M. C., Minicucci F., Fazio F., Smirne S., Del Maschio A. Focal cerebral lesions found by magnetic resonance imaging in cryptogenic nonrefractory temporal lobe epilepsy patients. Epilepsia. 1989 Sep-Oct;30(5):540–546. doi: 10.1111/j.1528-1157.1989.tb05469.x. [DOI] [PubMed] [Google Scholar]
  9. Hamacher K., Coenen H. H., Stöcklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med. 1986 Feb;27(2):235–238. [PubMed] [Google Scholar]
  10. Henry T. R., Mazziotta J. C., Engel J., Jr Interictal metabolic anatomy of mesial temporal lobe epilepsy. Arch Neurol. 1993 Jun;50(6):582–589. doi: 10.1001/archneur.1993.00540060022011. [DOI] [PubMed] [Google Scholar]
  11. Reivich M., Alavi A., Wolf A., Fowler J., Russell J., Arnett C., MacGregor R. R., Shiue C. Y., Atkins H., Anand A. Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metab. 1985 Jun;5(2):179–192. doi: 10.1038/jcbfm.1985.24. [DOI] [PubMed] [Google Scholar]
  12. Sackellares J. C., Siegel G. J., Abou-Khalil B. W., Hood T. W., Gilman S., McKeever P. E., Hichwa R. D., Hutchins G. D. Differences between lateral and mesial temporal metabolism interictally in epilepsy of mesial temporal origin. Neurology. 1990 Sep;40(9):1420–1426. doi: 10.1212/wnl.40.9.1420. [DOI] [PubMed] [Google Scholar]
  13. Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977 May;28(5):897–916. doi: 10.1111/j.1471-4159.1977.tb10649.x. [DOI] [PubMed] [Google Scholar]
  14. Swartz B. E., Tomiyasu U., Delgado-Escueta A. V., Mandelkern M., Khonsari A. Neuroimaging in temporal lobe epilepsy: test sensitivity and relationships to pathology and postoperative outcome. Epilepsia. 1992 Jul-Aug;33(4):624–634. doi: 10.1111/j.1528-1157.1992.tb02338.x. [DOI] [PubMed] [Google Scholar]
  15. Theodore W. H. Antiepileptic drugs and cerebral glucose metabolism. Epilepsia. 1988;29 (Suppl 2):S48–S55. doi: 10.1111/j.1528-1157.1988.tb05797.x. [DOI] [PubMed] [Google Scholar]
  16. Valk P. E., Laxer K. D., Barbaro N. M., Knezevic S., Dillon W. P., Budinger T. F. High-resolution (2.6-mm) PET in partial complex epilepsy associated with mesial temporal sclerosis. Radiology. 1993 Jan;186(1):55–58. doi: 10.1148/radiology.186.1.8416586. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES