Abstract
The inherent evolvability of promiscuous enzymes endows them with great potential to be artificially evolved for novel functions. Previously, we succeeded in transforming a promiscuous acylaminoacyl peptidase (apAAP) from the hyperthermophilic archaeon Aeropyrum pernix K1 into a specific carboxylesterase by making a single mutation. In order to fulfill the urgent requirement of thermostable lipolytic enzymes, in this paper we describe how the substrate preference of apAAP can be further changed from p-nitrophenyl caprylate (pNP-C8) to p-nitrophenyl laurate (pNP-C12) by protein and solvent engineering. After one round of directed evolution and subsequent saturation mutagenesis at selected residues in the active site, three variants with enhanced activity towards pNP-C12 were identified. Additionally, a combined mutant W474V/F488G/R526V/T560W was generated, which had the highest catalytic efficiency (kcat/Km) for pNP-C12, about 71-fold higher than the wild type. Its activity was further increased by solvent engineering, resulting in an activity enhancement of 280-fold compared with the wild type in the presence of 30% DMSO. The structural basis for the improved activity was studied by substrate docking and molecular dynamics simulation. It was revealed that W474V and F488G mutations caused a significant change in the geometry of the active center, which may facilitate binding and subsequent hydrolysis of bulky substrates. In conclusion, the combination of protein and solvent engineering may be an effective approach to improve the activities of promiscuous enzymes and could be used to create naturally rare hyperthermophilic enzymes.
Electronic Supplementary Material
Supplementary material is available for this article at 10.1007/s13238-011-1057-7 and is accessible for authorized users.
Keywords: acylaminoacyl peptidase, esterase, substrate specificity, protein engineering, solvent engineering
Electronic supplementary material
Footnotes
These authors contributed equally to the work.
Electronic Supplementary Material
Supplementary material is available for this article at 10.1007/s13238-011-1057-7 and is accessible for authorized users.
References
- Aharoni A., Gaidukov L., Khersonsky O., Mc Q.G.S., Roodveldt C., Tawfik D.S. The ‘evolvability’ of promiscuous protein functions. Nat Genet. 2005;37:73–76. doi: 10.1038/ng1482. [DOI] [PubMed] [Google Scholar]
- Bartlam M., Wang G., Yang H., Gao R., Zhao X., Xie G., Cao S., Feng Y., Rao Z. Crystal structure of an acylpeptide hydrolase/esterase from Aeropyrum pernix K1. Structure. 2004;12:1481–1488. doi: 10.1016/j.str.2004.05.019. [DOI] [PubMed] [Google Scholar]
- Gao R., Feng Y., Ishikawa K., Ishida H., Ando S., Kosugi Y., Cao S. Cloning, purification and properties of a hyperthermophilic esterase from archaeon Aeropyrum pernix K1. J Mol Catal, B Enzym. 2003;24–25:1–8. doi: 10.1016/S1381-1177(03)00064-X. [DOI] [Google Scholar]
- Ho B.K., Gruswitz F. HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct Biol. 2008;8:49. doi: 10.1186/1472-6807-8-49. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houde A., Kademi A., Leblanc D. Lipases and their industrial applications: an overview. Appl Biochem Biotechnol. 2004;118:155–170. doi: 10.1385/ABAB:118:1-3:155. [DOI] [PubMed] [Google Scholar]
- Hult K., Berglund P. Enzyme promiscuity: mechanism and applications. Trends Biotechnol. 2007;25:231–238. doi: 10.1016/j.tibtech.2007.03.002. [DOI] [PubMed] [Google Scholar]
- Imanaka T., Atomi H. Catalyzing “hot” reactions: enzymes from hyperthermophilic Archaea. Chem Rec. 2002;2:149–163. doi: 10.1002/tcr.10023. [DOI] [PubMed] [Google Scholar]
- Laskowski R.A., MacArthur M.W., Moss D.S., Thornton J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst. 1993;26:283–291. doi: 10.1107/S0021889892009944. [DOI] [Google Scholar]
- Luetz S., Giver L., Lalonde J. Engineered enzymes for chemical production. Biotechnol Bioeng. 2008;101:647–653. doi: 10.1002/bit.22077. [DOI] [PubMed] [Google Scholar]
- Luthy R., Bowie J.U., Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992;356:83–85. doi: 10.1038/356083a0. [DOI] [PubMed] [Google Scholar]
- Madigan M.T., Martinko J.M. Brock Biology of Microorganisms. 11th ed. Beijing: Science Press; 2006. [Google Scholar]
- Mandrich L., Manco G., Rossi M., Floris E., Jansen-van den Bosch T., Smit G., Wouters J.A. Alicyclobacillus acidocal-darius thermophilic esterase EST2’s activity in milk and cheese models. Appl Environ Microbiol. 2006;72:3191–3197. doi: 10.1128/AEM.72.5.3191-3197.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marti-Renom M.A., Stuart A.C., Fiser A., Sanchez R., Melo F., Sali A. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 2000;29:291–325. doi: 10.1146/annurev.biophys.29.1.291. [DOI] [PubMed] [Google Scholar]
- Martínez L., Andrade R., Birgin E.G., Martinez J.M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem. 2009;30:2157–2164. doi: 10.1002/jcc.21224. [DOI] [PubMed] [Google Scholar]
- Morley K.L., Kazlauskas R.J. Improving enzyme properties: when are closer mutations better? Trends Biotechnol. 2005;23:231–237. doi: 10.1016/j.tibtech.2005.03.005. [DOI] [PubMed] [Google Scholar]
- Niehaus F., Bertoldo C., Kahler M., Antranikian G. Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol. 1999;51:711–729. doi: 10.1007/s002530051456. [DOI] [PubMed] [Google Scholar]
- O’Brien P.J., Herschlag D. Catalytic promiscuity and the evolution of new enzymatic activities. Chem Biol. 1999;6:R91–R105. doi: 10.1016/S1074-5521(99)80033-7. [DOI] [PubMed] [Google Scholar]
- Paramesvaran J., Hibbert E.G., Russell A.J., Dalby P.A. Distributions of enzyme residues yielding mutants with improved substrate specificities from two different directed evolution strategies. Protein Eng Des Sel. 2009;22:401–411. doi: 10.1093/protein/gzp020. [DOI] [PubMed] [Google Scholar]
- Rui L., Kwon Y.M., Fishman A., Reardon K.F., Wood T.K. Saturation mutagenesis of toluene ortho-monooxygenase of Burkholderia cepacia G4 for Enhanced 1-naphthol synthesis and chloroform degradation. Appl Environ Microbiol. 2004;70:3246–3252. doi: 10.1128/AEM.70.6.3246-3252.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salameh M., Wiegel J. Lipases from extremophiles and potential for industrial applications. Adv Appl Microbiol. 2007;61:253–283. doi: 10.1016/S0065-2164(06)61007-1. [DOI] [PubMed] [Google Scholar]
- Schuttelkopf A.W., van Aalten D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr. 2004;60:1355–1363. doi: 10.1107/S0907444904011679. [DOI] [PubMed] [Google Scholar]
- Soares C.M., Teixeira V.H., Baptista A.M. Protein structure and dynamics in nonaqueous solvents: insights from molecular dynamics simulation studies. Biophys J. 2003;84:1628–1641. doi: 10.1016/S0006-3495(03)74972-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stahl M., Jeppsson-Wistrand U., Mansson M.O., Mosbach K. Induced stereo- and substrate selectivity of bioimprinted α-chymotrypsin in anhydrous organic media. J Am Chem Soc. 1991;113:9366–9368. doi: 10.1021/ja00024a051. [DOI] [Google Scholar]
- Tawaki S., Klibanov A.M. Inversion of enzyme enantioselectivity mediated by the solvent. J Am Chem Soc. 1992;114:1882–1884. doi: 10.1021/ja00031a054. [DOI] [Google Scholar]
- Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A.E., Berendsen H.J. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26:1701–1718. doi: 10.1002/jcc.20291. [DOI] [PubMed] [Google Scholar]
- Vartanian J.P., Henry M., Wain-Hobson S. Simulating pseudogene evolution in vitro: determining the true number of mutations in a lineage. Proc Natl Acad Sci USA. 2001;98:13172–13176. doi: 10.1073/pnas.221334898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verma M.L., Azmi W., Kanwar S.S. Microbial lipases: at the interface of aqueous and non-aqueous media. A review. Acta Microbiol Immunol Hung. 2008;55:265–294. doi: 10.1556/AMicr.55.2008.3.1. [DOI] [PubMed] [Google Scholar]
- Wang Q., Yang G., Liu Y., Feng Y. Discrimination of esterase and peptidase activities of acylaminoacyl peptidase from hyperthermophilic Aeropyrum pernix K1 by a single mutation. J Biol Chem. 2006;281:18618–18625. doi: 10.1074/jbc.M601015200. [DOI] [PubMed] [Google Scholar]
- Wescott C.R., Klibanov A.M. Solvent variation inverts substrate specificity of an enzyme. J Am Chem Soc. 1993;115:1629–1631. doi: 10.1021/ja00058a002. [DOI] [Google Scholar]
- Yang G., Bai A., Gao L., Zhang Z., Zheng B., Feng Y. Glu88 in the non-catalytic domain of acylpeptide hydrolase plays dual roles: charge neutralization for enzymatic activity and formation of salt bridge for thermodynamic stability. Biochim Biophys Acta. 2009;1794:94–102. doi: 10.1016/j.bbapap.2008.09.007. [DOI] [PubMed] [Google Scholar]
- Yang L., Dordick J.S., Garde S. Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity. Biophys J. 2004;87:812–821. doi: 10.1529/biophysj.104.041269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zaks A., Klibanov A.M. Enzyme-catalyzed processes in organic solvents. Proc Natl Acad Sci USA. 1985;82:3192–3196. doi: 10.1073/pnas.82.10.3192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zheng L., Baumann U., Reymond J.L. An efficient onestep site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res. 2004;32:e115. doi: 10.1093/nar/gnh110. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.