Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2010 Aug 28;1(8):780–790. doi: 10.1007/s13238-010-0090-2

Reaction mechanism of azoreductases suggests convergent evolution with quinone oxidoreductases

Ali Ryan 1, Chan-Ju Wang 1, Nicola Laurieri 1, Isaac Westwood 1, Edith Sim 1,
PMCID: PMC4875192  PMID: 21203919

Abstract

Azoreductases are involved in the bioremediation by bacteria of azo dyes found in waste water. In the gut flora, they activate azo pro-drugs, which are used for treatment of inflammatory bowel disease, releasing the active component 5-aminosalycilic acid. The bacterium P. aeruginosa has three azoreductase genes, paAzoR1, paAzoR2 and paAzoR3, which as recombinant enzymes have been shown to have different substrate specificities. The mechanism of azoreduction relies upon tautomerisation of the substrate to the hydrazone form. We report here the characterization of the P. aeruginosa azoreductase enzymes, including determining their thermostability, cofactor preference and kinetic constants against a range of their favoured substrates. The expression levels of these enzymes during growth of P. aeruginosa are altered by the presence of azo substrates. It is shown that enzymes that were originally described as azoreductases, are likely to act as NADH quinone oxidoreductases. The low sequence identities observed among NAD(P)H quinone oxidoreductase and azoreductase enzymes suggests convergent evolution.

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-010-0090-2 and is accessible for authorized users.

Keywords: azoreductase, enzyme mechanism, NAD(P)H quinone oxidoreductase, enzyme characterisation, convergent evolution

Electronic supplementary material

13238_2010_90_MOESM1_ESM.pdf (247.9KB, pdf)

Supplementary material, approximately 340 KB.

Footnotes

These authors contributed equally to the work.

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-010-0090-2 and is accessible for authorized users.

References

  1. Ackerley D.F., Gonzalez C.F., Park C.H., Blake R., 2nd, Keyhan M., Matin A. Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl Environ Microbiol. 2004;70:873–882. doi: 10.1128/AEM.70.2.873-882.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams M.A., Jia Z. Modulator of drug activity B from Escherichia coli: crystal structure of a prokaryotic homologue of DT-diaphorase. J Mol Biol. 2006;359:455–465. doi: 10.1016/j.jmb.2006.03.053. [DOI] [PubMed] [Google Scholar]
  3. Agarwal R., Bonanno J.B., Burley S.K., Swaminathan S. Structure determination of an FMN reductase from Pseudomonas aeruginosa PA01 using sulfur anomalous signal. Acta Crystallogr D Biol Crystallogr. 2006;62:383–391. doi: 10.1107/S0907444906001600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alard A., Fabre B., Anesia R., Marboeuf C., Pierre P., Susini C., Bousquet C., Pyronnet S. NAD(P)H quinoneoxydoreductase 1 protects eukaryotic translation initiation factor 4GI from degradation by the proteasome. Mol Cell Biol. 2010;30:1097–1105. doi: 10.1128/MCB.00868-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Alves de Lima R.O., Bazo A.P., Salvadori D.M.F., Rech C.M., de Palma Oliveira D., de Aragão Umbuzeiro G. Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutat Res. 2007;626:53–60. doi: 10.1016/j.mrgentox.2006.08.002. [DOI] [PubMed] [Google Scholar]
  6. Armougom F., Moretti S., Poirot O., Audic S., Dumas P., Schaeli B., Keduas V., Notredame C. Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee. Nucleic Acids Res. 2006;34:W604–608. doi: 10.1093/nar/gkl092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bin Y., Jiti Z., Jing W., Cuihong D., Hongman H., Zhiyong S., Yongming B. Expression and characteristics of the gene encoding azoreductase from Rhodobacter sphaeroides AS1.1737. FEMS Microbiol Lett. 2004;236:129–136. doi: 10.1111/j.1574-6968.2004.tb09638.x. [DOI] [PubMed] [Google Scholar]
  8. Binter A., Staunig N., Jelesarov I., Lohner K., Palfey B.A., Deller S., Gruber K., Macheroux P. A single intersubunit salt bridge affects oligomerization and catalytic activity in a bacterial quinone reductase. FEBS J. 2009;276:5263–5274. doi: 10.1111/j.1742-4658.2009.07222.x. [DOI] [PubMed] [Google Scholar]
  9. Chen H., Wang R.F., Cerniglia C.E. Molecular cloning, overexpression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis. Protein Expr Purif. 2004;34:302–310. doi: 10.1016/j.pep.2003.12.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cui K., Lu A.Y., Yang C.S. Subunit functional studies of NAD(P)H:quinone oxidoreductase with a heterodimer approach. Proc Natl Acad Sci U S A. 1995;92:1043–1047. doi: 10.1073/pnas.92.4.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Deller S., Sollner S., Trenker-El-Toukhy R., Jelesarov I., Gübitz G. M., Macheroux P. Characterization of a thermostable NADPH:FMN oxidoreductase from the mesophilic bacterium Bacillus subtilis. Biochemistry. 2006;45:7083–7091. doi: 10.1021/bi052478r. [DOI] [PubMed] [Google Scholar]
  12. dos Santos A.B., Cervantes F.J., van Lier J.B. Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol. 2007;98:2369–2385. doi: 10.1016/j.biortech.2006.11.013. [DOI] [PubMed] [Google Scholar]
  13. Duurkens R.H., Tol M.B., Geertsma E.R., Permentier H.P., Slotboom D.J. Flavin binding to the high affinity riboflavin transporter RibU. J Biol Chem. 2007;282:10380–10386. doi: 10.1074/jbc.M608583200. [DOI] [PubMed] [Google Scholar]
  14. El-Shafei A., Fadda A.A., Khalil A.M., Ameen T.A., Badria F.A. Synthesis, antitumor evaluation, molecular modeling and quantitative structure-activity relationship (QSAR) of some novel arylazopyrazolodiazine and triazine analogs. Bioorg Med Chem. 2009;17:5096–5105. doi: 10.1016/j.bmc.2009.05.053. [DOI] [PubMed] [Google Scholar]
  15. Environmental Protection Agency. (1997). Profile of the Textile Industry. In Sector Notebook Project (Washington, DC).
  16. Farghaly T.A., Abdalla M.M. Synthesis, tautomerism, and antimicrobial, anti-HCV, anti-SSPE, antioxidant, and antitumor activities of arylazobenzosuberones. Bioorg Med Chem. 2009;17:8012–8019. doi: 10.1016/j.bmc.2009.10.012. [DOI] [PubMed] [Google Scholar]
  17. Fetzner S., Müller R., Lingens F. Purification and some properties of 2-halobenzoate 1,2-dioxygenase, a two-component enzyme system from Pseudomonas cepacia 2CBS. J Bacteriol. 1992;174:279–290. doi: 10.1128/jb.174.1.279-290.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Foster C.E., Bianchet M.A., Talalay P., Zhao Q., Amzel L.M. Crystal structure of human quinone reductase type 2, a metalloflavoprotein. Biochemistry. 1999;38:9881–9886. doi: 10.1021/bi990799v. [DOI] [PubMed] [Google Scholar]
  19. Gorman J., Shapiro L. Crystal structures of the tryptophan repressor binding protein WrbA and complexes with flavin mononucleotide. Protein Sci. 2005;14:3004–3012. doi: 10.1110/ps.051680805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ito K., Nakanishi M., Lee W.C., Sasaki H., Zenno S., Saigo K., Kitade Y., Tanokura M. Three-dimensional structure of AzoR from Escherichia coli. An oxidereductase conserved in microorganisms. J Biol Chem. 2006;281:20567–20576. doi: 10.1074/jbc.M513345200. [DOI] [PubMed] [Google Scholar]
  21. Lewis, D.F.V. (2001). Guide to Cytochromes P450: Structure and Function (New York, US, Taylor and Francis).
  22. Li R., Bianchet M.A., Talalay P., Amzel L.M. The three-dimensional structure of NAD(P)H:quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction. Proc Natl Acad Sci U S A. 1995;92:8846–8850. doi: 10.1073/pnas.92.19.8846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lichtenstein G.R., Kamm M.A. Review article: 5-aminosalicylate formulations for the treatment of ulcerative colitis-methods of comparing release rates and delivery of 5-aminosalicylate to the colonic mucosa. Aliment Pharmacol Ther. 2008;28:663–673. doi: 10.1111/j.1365-2036.2008.03751.x. [DOI] [PubMed] [Google Scholar]
  24. Liger D., Graille M., Zhou C.Z., Leulliot N., Quevillon-Cheruel S., Blondeau K., Janin J., van Tilbeurgh H. Crystal structure and functional characterization of yeast YLR011wp, an enzyme with NAD(P)H-FMN and ferric iron reductase activities. J Biol Chem. 2004;279:34890–34897. doi: 10.1074/jbc.M405404200. [DOI] [PubMed] [Google Scholar]
  25. Liu G., Zhou J., Jin R., Zhou M., Wang J., Lu H., Qu Y. Enhancing survival of Escherichia coli by expression of azoreductase AZR possessing quinone reductase activity. Appl Microbiol Biotechnol. 2008;80:409–416. doi: 10.1007/s00253-008-1555-6. [DOI] [PubMed] [Google Scholar]
  26. Liu G., Zhou J., Fu Q.S., Wang J. The Escherichia coli azoreductase AzoR Is involved in resistance to thiol-specific stress caused by electrophilic quinones. J Bacteriol. 2009;191:6394–6400. doi: 10.1128/JB.00552-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Long D.J., 2nd, Gaikwad A., Multani A., Pathak S., Montgomery C. A., Gonzalez F.J., Jaiswal A.K. Disruption of the NAD(P) H:quinone oxidoreductase 1 (NQO1) gene in mice causes myelogenous hyperplasia. Cancer Res. 2002;62:3030–3036. [PubMed] [Google Scholar]
  28. Nakanishi M., Yatome C., Ishida N., Kitade Y. Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J Biol Chem. 2001;276:46394–46399. doi: 10.1074/jbc.M104483200. [DOI] [PubMed] [Google Scholar]
  29. Nissen M.S., Youn B., Knowles B.D., Ballinger J.W., Jun S.Y., Belchik S.M., Xun L., Kang C. Crystal structures of NADH:FMN oxidoreductase (EmoB) at different stages of catalysis. J Biol Chem. 2008;283:28710–28720. doi: 10.1074/jbc.M804535200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Patridge E.V., Ferry J.G. WrbA from Escherichia coli and Archaeoglobus fulgidus is an NAD(P)H:quinone oxidoreductase. J Bacteriol. 2006;188:3498–3506. doi: 10.1128/JB.188.10.3498-3506.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Peppercorn M.A., Goldman P. The role of intestinal bacteria in the metabolism of salicylazosulfapyridine. J Pharmacol Exp Ther. 1972;181:555–562. [PubMed] [Google Scholar]
  32. Potterton L., McNicholas S., Krissinel E., Gruber J., Cowtan K., Emsley P., Murshudov G.N., Cohen S., Perrakis A., Noble M. Developments in the CCP4 molecular-graphics project. Acta Crystallogr D Biol Crystallogr. 2004;60:2288–2294. doi: 10.1107/S0907444904023716. [DOI] [PubMed] [Google Scholar]
  33. Poulos T.L., Finzel B.C., Gunsalus I.C., Wagner G.C., Kraut J. The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450. J Biol Chem. 1985;260:16122–16130. [PubMed] [Google Scholar]
  34. Roosild T.P., Castronovo S., Miller S., Li C., Rasmussen T., Bartlett W., Gunasekera B., Choe S., Booth I.R. KTN (RCK) domains regulate K+ channels and transporters by controlling the dimer-hinge conformation. Structure. 2009;17:893–903. doi: 10.1016/j.str.2009.03.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ryan A., Laurieri N., Westwood I., Wang C.J., Lowe E., Sim E. A novel mechanism for azoreduction. J Mol Biol. 2010;400:24–37. doi: 10.1016/j.jmb.2010.04.023. [DOI] [PubMed] [Google Scholar]
  36. Sandy J., Mushtaq A., Holton S.J., Schartau P., Noble M.E., Sim E. Investigation of the catalytic triad of arylamine Nacetyltransferases: essential residues required for acetyl transfer to arylamines. Biochem J. 2005;390:115–123. doi: 10.1042/BJ20050277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Savli H., Karadenizli A., Kolayli F., Gundes S., Ozbek U., Vahaboglu H. Expression stability of six housekeeping genes: A proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol. 2003;52:403–408. doi: 10.1099/jmm.0.05132-0. [DOI] [PubMed] [Google Scholar]
  38. Sherma J.F. B. Handbook of thin layer chromatography. 3rd edn. New York: Marcel Dekker; 2003. [Google Scholar]
  39. Shore J. Dyeing with reactive dyes. In: Shore J., editor. In cellulosics dyeing. Manchester, UK: The Alden Press; 1995. [Google Scholar]
  40. Sinclair J.C., Sandy J., Delgoda R., Sim E., Noble M.E. Structure of arylamine N-acetyltransferase reveals a catalytic triad. Nat Struct Biol. 2000;7:560–564. doi: 10.1038/76783. [DOI] [PubMed] [Google Scholar]
  41. Sollner S., Nebauer R., Ehammer H., Prem A., Deller S., Palfey B. A., Daum G., Macheroux P. Lot6p from Saccharomyces cerevisiae is a FMN-dependent reductase with a potential role in quinone detoxification. FEBS J. 2007;274:1328–1339. doi: 10.1111/j.1742-4658.2007.05682.x. [DOI] [PubMed] [Google Scholar]
  42. Sollner S., Deller S., Macheroux P., Palfey B.A. Mechanism of flavin reduction and oxidation in the redox-sensing quinone reductase Lot6p from Saccharomyces cerevisiae. Biochemistry. 2009;48:8636–8643. doi: 10.1021/bi900734a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sollner S., Schober M., Wagner A., Prem A., Lorkova L., Palfey B. A., Groll M., Macheroux P. Quinone reductase acts as a redox switch of the 20S yeast proteasome. EMBO Rep. 2009;10:65–70. doi: 10.1038/embor.2008.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sparla F., Tedeschi G., Pupillo P., Trost P. Cloning and heterologous expression of NAD(P)H:quinone reductase of Arabidopsis thaliana, a functional homologue of animal DT-diaphorase. FEBS Lett. 1999;463:382–386. doi: 10.1016/S0014-5793(99)01625-7. [DOI] [PubMed] [Google Scholar]
  45. Stolz A. Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol. 2001;56:69–80. doi: 10.1007/s002530100686. [DOI] [PubMed] [Google Scholar]
  46. Tomasz M., Palom Y. The mitomycin bioreductive antitumor agents: cross-linking and alkylation of DNA as the molecular basis of their activity. Pharmacol Ther. 1997;76:73–87. doi: 10.1016/S0163-7258(97)00088-0. [DOI] [PubMed] [Google Scholar]
  47. Töwe S., Leelakriangsak M., Kobayashi K., Van Duy N., Hecker M., Zuber P., Antelmann H. The MarR-type repressor MhqR (YkvE) regulates multiple dioxygenases/glyoxalases and an azoreductase which confer resistance to 2-methylhydroquinone and catechol in Bacillus subtilis. Mol Microbiol. 2007;66:40–54. doi: 10.1111/j.1365-2958.2007.05891.x. [DOI] [PubMed] [Google Scholar]
  48. Wang C.J. Characterisation of azoreductases from Pseudomonas aeruginosa In Pharmacology. Oxford: University of Oxford; 2008. p. 229. [Google Scholar]
  49. Wang C.J., Hagemeier C., Rahman N., Lowe E., Noble M., Coughtrie M., Sim E., Westwood I. Molecular cloning, characterisation and ligand-bound structure of an azoreductase from Pseudomonas aeruginosa. J Mol Biol. 2007;373:1213–1228. doi: 10.1016/j.jmb.2007.08.048. [DOI] [PubMed] [Google Scholar]
  50. Wang C.J., Laurieri N., Abuhammad A., Lowe E., Westwood I., Ryan A., Sim E. Role of Tyrosine 131 in the active site of paAzoR1, an azoreductase with specificity for the inflammatory bowel disease pro-drug balsalazide. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010;66:2–7. doi: 10.1107/S1744309109044741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wang X., Jia J., Wang Y. Electrochemical degradation of reactive dye in the presence of water jet cavitation. Ultrason Sonochem. 2010;17:515–520. doi: 10.1016/j.ultsonch.2009.10.023. [DOI] [PubMed] [Google Scholar]
  52. Ye J., Yang H.C., Rosen B.P., Bhattacharjee H. Crystal structure of the flavoprotein ArsH from Sinorhizobium meliloti. FEBS Lett. 2007;581:3996–4000. doi: 10.1016/j.febslet.2007.07.039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. You S.J., Tseng D.H., Ou S.H., Chang W.K. Performance and microbial diversity of a membrane bioreactor treating real textile dyeing wastewater. Environ Technol. 2007;28:935–941. doi: 10.1080/09593332808618854. [DOI] [PubMed] [Google Scholar]
  54. Zhang J., Sun Z., Li Y., Peng X., Li W., Yan Y. Biodegradation of p-nitrophenol by Rhodococcus sp. CN6 with high cell surface hydrophobicity. J Hazard Mater. 2009;163:723–728. doi: 10.1016/j.jhazmat.2008.07.018. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

13238_2010_90_MOESM1_ESM.pdf (247.9KB, pdf)

Supplementary material, approximately 340 KB.


Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES