Abstract
An overview of the background for proteomics and a description of the present state of art are given with a description of the main strategies in proteomics. The advantages and limitations of the two major strategies, 2D-gel based and LC-MS based, are discussed and a combination for the two, CeLC-MS is described. A number of challenging problems which have been solved using different proteomics strategies including the advantage of organell enrichment or modifications specific peptide isolation to get deeper into the proteome are described. Finally the present status and future needs discussed.
Keywords: proteomics, 2D-PAGE, LC-MS, isoforms, phosphorylation
References
- Ahlf, D.R, Compton, P.D., Tran, J.C., Early, B.P, Thomas, P.M., and Kelleher, N.L. (2012). Evaluation of the compact high-field orbitrap for top-down proteomics of human cells. J Proteome Res. (In press). [DOI] [PMC free article] [PubMed]
- Bauw G., Vandamme J., Puype M., Vandekerchove J., Gesser B., Ratz G.P., Lauritsen J.B., Celis J.E. Protein-electroblotting and protein-microsequencing strategies in generating protein data-bases from two-dimensional gels. (computerized protein data-bases human genome sequencing) Proc Natl Acad Sci U S A. 1989;86:7701–7705. doi: 10.1073/pnas.86.20.7701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyne M.T., II, Pesavento J.J., Mizzen C.A., Kelleher N.L. Precise characterization of human histones in the H2A gene family by top down mass spectrometry. J Proteome Res. 2006;5:248–253. doi: 10.1021/pr050269n. [DOI] [PubMed] [Google Scholar]
- Engholm-Keller K., Hansen T.A., Palmisano G., Larsen M.R. Multidimensional strategy for sensitive phosphoproteomics incorporating protein prefractionation combined with SIMAC, HILIC, and TiO(2) chromatography applied to proximal EGF signaling. J Proteome Res. 2011;10:5383–5397. doi: 10.1021/pr200641x. [DOI] [PubMed] [Google Scholar]
- Feistner G.J., Højrup P., Evans C.J., Barofsky D.F., Faull K.F., Roepstorff P. Mass spectrometric charting of bovine posterior/interior pituitary peptides. Proc Natl Acad Sci U S A. 1989;86:6013–6017. doi: 10.1073/pnas.86.16.6013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fenn J.B., Mann M., Meng C.K., Wong S.F., Whitehouse C.M. Electrospray ionization for the mass spectrometry of large biomolecules. Science. 1989;246:64–71. doi: 10.1126/science.2675315. [DOI] [PubMed] [Google Scholar]
- Henzel W.J., Billeci T.M., Stults J.T., Wong S.C. Identifying proteins from 2-dimensional gels by molecular mass searching of peptide-fragments in protein sequence databases. Proc Natl Acad Sci U S A. 1993;90:5011–5015. doi: 10.1073/pnas.90.11.5011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- James P., Quadroni M., Carafoli E., Gonnet G. Protein identification by mass profile fingerprinting. Biochem Biophys Res Commun. 1993;195:58–64. doi: 10.1006/bbrc.1993.2009. [DOI] [PubMed] [Google Scholar]
- Karas M., Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal Chem. 1988;60:1299–2301. doi: 10.1021/ac00171a028. [DOI] [PubMed] [Google Scholar]
- Mann M., Højrup P., Roepstorff P. Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom. 1993;22:338–345. doi: 10.1002/bms.1200220605. [DOI] [PubMed] [Google Scholar]
- Mann M., Wilm M. Error tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem. 1994;66:4390–4399. doi: 10.1021/ac00096a002. [DOI] [PubMed] [Google Scholar]
- Mann M., Jensen O.N. Proteomic analysis of post-translational modifications. Nat Biotechnol. 2003;21:255–261. doi: 10.1038/nbt0303-255. [DOI] [PubMed] [Google Scholar]
- Larsen T.R., Bache N., Gramsbergen J.B., Roepstorff P. Identification of nitrotyrosine containing peptides using combined fractional diagonal chromatography (COFRADIC) and off-line nano-LC-MALDI. J Am Soc Mass Spectrom. 2011;22:989–996. doi: 10.1007/s13361-011-0095-y. [DOI] [PubMed] [Google Scholar]
- Laugesen S., Bak-Jensen K.S., Hägglund P., Henriksen A., Finnie C., Svensson B., Roepstorff P. Barley peroxidase isozymes. and post-translational modification in mature seeds as identified by two-dimensional gel electrophoresis and mass spectrometry. Intl J Mass Spectrometry. 2007;268:244–253. [Google Scholar]
- Nogueira F.C., Palmisano G., Soares E.L., Shah M., Soares A.A., Roepstorff P., Campos F.A., Domont G.B. Proteomic profile of the nucellus of castor bean (Ricinus communis L.) seeds during development. J Proteomics. 2012;75:1933–1939. doi: 10.1016/j.jprot.2012.01.002. [DOI] [PubMed] [Google Scholar]
- Pappin D.J.C., Højrup P., Bleasby A.J. Rapid identification of proteins by peptide-mass finger printing. Curr Biol. 1993;3:327–332. doi: 10.1016/0960-9822(93)90195-T. [DOI] [PubMed] [Google Scholar]
- Schiøtt M., Rogowska-Wrzesinska A., Roepstorff P., Boomsma J.J. Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi. BMC Biol. 2010;8:156–168. doi: 10.1186/1741-7007-8-156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkins M.R., Pasquali C., Appel R.D., Ou K., Golaz O., Sanchez J.C., Yan J.X., Gooley A.A., Hughes G., Humphery-Smith I., et al. From proteins to proteomes: Large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology. 1996;14:61–65. doi: 10.1038/nbt0196-61. [DOI] [PubMed] [Google Scholar]
- Verano-Braga T., Schwämmle V., Sylvester M., Passos-Silva D.G., Peluso A.A., Etelvino G.M., Santos R.A., Roepstorff P. Time-resolved quantitative phosphoproteomics: new insights into angiotensin-(1–7) signaling networks in human endothelial cells. J Proteome Res. 2012;11:3370–3381. doi: 10.1021/pr3001755. [DOI] [PubMed] [Google Scholar]
- Zhao Y., Jensen O.N. Modification-specific proteomics: Strategies for characterization of post-translational modifications using enrichment techniques. Proteomics. 2009;9:4632–4641. doi: 10.1002/pmic.200900398. [DOI] [PMC free article] [PubMed] [Google Scholar]