Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Apr 15;89(8):3310–3314. doi: 10.1073/pnas.89.8.3310

Evolutionarily different alphoid repeat DNA on homologous chromosomes in human and chimpanzee.

A L Jørgensen 1, H B Laursen 1, C Jones 1, A L Bak 1
PMCID: PMC48856  PMID: 1565621

Abstract

Centromeric alphoid DNA in primates represents a class of evolving repeat DNA. In humans, chromosomes 13 and 21 share one subfamily of alphoid DNA while chromosomes 14 and 22 share another subfamily. We show that similar pairwise homogenizations occur in the chimpanzee (Pan troglodytes), where chromosomes 14 and 22, homologous to human chromosomes 13 and 21, share one partially homogenized alphoid DNA subfamily and chromosomes 15 and 23, homologous to human chromosomes 14 and 22, share another extensively homogenized subfamily. Such a pattern of homogenization presumably predates speciation 3-10 million years ago. However, the alphoid DNA on these human and chimpanzee chromosomes is not orthologous but originates from two evolutionarily different repeat families. It follows that dramatic sequence evolution has occurred in a concerted fashion among the chromosomes in one or both species during or after separation.

Full text

PDF
3312

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aleksandrov I. A., Akopian T. A., Vinnik E. A., Mitkevich S. P., Kiselev L. L. Pervichnaia struktura khromosomospetsifichnykh al'fa-satellitnykh DNK cheloveka. Dokl Akad Nauk SSSR. 1988;300(5):1235–1239. [PubMed] [Google Scholar]
  2. Alexandrov I. A., Mitkevich S. P., Yurov Y. B. The phylogeny of human chromosome specific alpha satellites. Chromosoma. 1988;96(6):443–453. doi: 10.1007/BF00303039. [DOI] [PubMed] [Google Scholar]
  3. Andrews P., Cronin J. E. The relationships of Sivapithecus and Ramapithecus and the evolution of the orang-utan. Nature. 1982 Jun 17;297(5867):541–546. doi: 10.1038/297541a0. [DOI] [PubMed] [Google Scholar]
  4. Britten R. J. Rates of DNA sequence evolution differ between taxonomic groups. Science. 1986 Mar 21;231(4744):1393–1398. doi: 10.1126/science.3082006. [DOI] [PubMed] [Google Scholar]
  5. Cherty L. M., Case S. M., Wilson A. C. Frog perspective on the morphological difference between humans and chimpanzees. Science. 1978 Apr 14;200(4338):209–211. doi: 10.1126/science.635583. [DOI] [PubMed] [Google Scholar]
  6. Choo K. H., Earle E., Vissel B., Filby R. G. Identification of two distinct subfamilies of alpha satellite DNA that are highly specific for human chromosome 15. Genomics. 1990 Jun;7(2):143–151. doi: 10.1016/0888-7543(90)90534-2. [DOI] [PubMed] [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Devilee P., Slagboom P., Cornelisse C. J., Pearson P. L. Sequence heterogeneity within the human alphoid repetitive DNA family. Nucleic Acids Res. 1986 Mar 11;14(5):2059–2073. doi: 10.1093/nar/14.5.2059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Djian P., Green H. Vectorial expansion of the involucrin gene and the relatedness of the hominoids. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8447–8451. doi: 10.1073/pnas.86.21.8447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dover G. Molecular drive: a cohesive mode of species evolution. Nature. 1982 Sep 9;299(5879):111–117. doi: 10.1038/299111a0. [DOI] [PubMed] [Google Scholar]
  11. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368–376. doi: 10.1007/BF01734359. [DOI] [PubMed] [Google Scholar]
  12. Goldman D., Giri P. R., O'Brien S. J. A molecular phylogeny of the hominoid primates as indicated by two-dimensional protein electrophoresis. Proc Natl Acad Sci U S A. 1987 May;84(10):3307–3311. doi: 10.1073/pnas.84.10.3307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gray K. M., White J. W., Costanzi C., Gillespie D., Schroeder W. T., Calabretta B., Saunders G. F. Recent amplification of an alpha satellite DNA in humans. Nucleic Acids Res. 1985 Jan 25;13(2):521–535. doi: 10.1093/nar/13.2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jabs E. W., Goble C. A., Cutting G. R. Macromolecular organization of human centromeric regions reveals high-frequency, polymorphic macro DNA repeats. Proc Natl Acad Sci U S A. 1989 Jan;86(1):202–206. doi: 10.1073/pnas.86.1.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jørgensen A. L., Bostock C. J., Bak A. L. Homologous subfamilies of human alphoid repetitive DNA on different nucleolus organizing chromosomes. Proc Natl Acad Sci U S A. 1987 Feb;84(4):1075–1079. doi: 10.1073/pnas.84.4.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jørgensen A. L., Jones C., Bostock C. J., Bak A. L. Different subfamilies of alphoid repetitive DNA are present on the human and chimpanzee homologous chromosomes 21 and 22. EMBO J. 1987 Jun;6(6):1691–1696. doi: 10.1002/j.1460-2075.1987.tb02419.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jørgensen A. L., Kølvraa S., Jones C., Bak A. L. A subfamily of alphoid repetitive DNA shared by the NOR-bearing human chromosomes 14 and 22. Genomics. 1988 Aug;3(2):100–109. doi: 10.1016/0888-7543(88)90139-5. [DOI] [PubMed] [Google Scholar]
  18. Koop B. F., Goodman M., Xu P., Chan K., Slightom J. L. Primate eta-globin DNA sequences and man's place among the great apes. Nature. 1986 Jan 16;319(6050):234–238. doi: 10.1038/319234a0. [DOI] [PubMed] [Google Scholar]
  19. Li W. H., Tanimura M. The molecular clock runs more slowly in man than in apes and monkeys. Nature. 1987 Mar 5;326(6108):93–96. doi: 10.1038/326093a0. [DOI] [PubMed] [Google Scholar]
  20. Maio J. J., Brown F. L., Musich P. R. Toward a molecular paleontology of primate genomes. I. The HindIII and EcoRI dimer families of alphoid DNAs. Chromosoma. 1981;83(1):103–125. doi: 10.1007/BF00286019. [DOI] [PubMed] [Google Scholar]
  21. Masumoto H., Masukata H., Muro Y., Nozaki N., Okazaki T. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol. 1989 Nov;109(5):1963–1973. doi: 10.1083/jcb.109.5.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mian A., Dover G. A. Promoter variation in the ribosomal RNA genes in Drosophila melanogaster strains. Nucleic Acids Res. 1990 Jul 11;18(13):3795–3801. doi: 10.1093/nar/18.13.3795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Miyamoto M. M., Slightom J. L., Goodman M. Phylogenetic relations of humans and African apes from DNA sequences in the psi eta-globin region. Science. 1987 Oct 16;238(4825):369–373. doi: 10.1126/science.3116671. [DOI] [PubMed] [Google Scholar]
  24. Okumura K., Kiyama R., Oishi M. Sequence analyses of extrachromosomal Sau3A and related family DNA: analysis of recombination in the excision event. Nucleic Acids Res. 1987 Sep 25;15(18):7477–7489. doi: 10.1093/nar/15.18.7477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Smith G. P. Evolution of repeated DNA sequences by unequal crossover. Science. 1976 Feb 13;191(4227):528–535. doi: 10.1126/science.1251186. [DOI] [PubMed] [Google Scholar]
  26. Strachan T., Webb D., Dover G. A. Transition stages of molecular drive in multiple-copy DNA families in Drosophila. EMBO J. 1985 Jul;4(7):1701–1708. doi: 10.1002/j.1460-2075.1985.tb03839.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Thompson J. D., Sylvester J. E., Gonzalez I. L., Costanzi C. C., Gillespie D. Definition of a second dimeric subfamily of human alpha satellite DNA. Nucleic Acids Res. 1989 Apr 11;17(7):2769–2782. doi: 10.1093/nar/17.7.2769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Waye J. S., England S. B., Willard H. F. Genomic organization of alpha satellite DNA on human chromosome 7: evidence for two distinct alphoid domains on a single chromosome. Mol Cell Biol. 1987 Jan;7(1):349–356. doi: 10.1128/mcb.7.1.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wevrick R., Earnshaw W. C., Howard-Peebles P. N., Willard H. F. Partial deletion of alpha satellite DNA associated with reduced amounts of the centromere protein CENP-B in a mitotically stable human chromosome rearrangement. Mol Cell Biol. 1990 Dec;10(12):6374–6380. doi: 10.1128/mcb.10.12.6374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wevrick R., Willard H. F. Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9394–9398. doi: 10.1073/pnas.86.23.9394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Willard H. F. The genomics of long tandem arrays of satellite DNA in the human genome. Genome. 1989;31(2):737–744. doi: 10.1139/g89-132. [DOI] [PubMed] [Google Scholar]
  32. Willard H. F., Waye J. S. Chromosome-specific subsets of human alpha satellite DNA: analysis of sequence divergence within and between chromosomal subsets and evidence for an ancestral pentameric repeat. J Mol Evol. 1987;25(3):207–214. doi: 10.1007/BF02100014. [DOI] [PubMed] [Google Scholar]
  33. Wu J. C., Manuelidis L. Sequence definition and organization of a human repeated DNA. J Mol Biol. 1980 Sep 25;142(3):363–386. doi: 10.1016/0022-2836(80)90277-6. [DOI] [PubMed] [Google Scholar]
  34. Yunis J. J., Prakash O. The origin of man: a chromosomal pictorial legacy. Science. 1982 Mar 19;215(4539):1525–1530. doi: 10.1126/science.7063861. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES