Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1980 Mar;43(3):222–234. doi: 10.1136/jnnp.43.3.222

Effects of hypercapnia and arterial hypotension and hypertension on cerebrospinal fluid pulse pressure and intracranial volume-pressure relationships.

C J Avezaat, J H van Eijndhoven, D J Wyper
PMCID: PMC490514  PMID: 7373319

Abstract

In twelve anaesthetised, ventilated dogs the effects of hypercapnia and pharmacologically induced arterial hypotension and hypertension on the interrelation between volume-pressure response (VPR) and cerebro-spinal fluid (CSF) pulse pressure were studied during continuous inflation of a supratentorial extradural balloon. Hypercapnia did not significantly affect the intracranial volume-pressure relationships, but did cause a significant increase in gradient of the relationship between CSF pulse pressure and intracranial pressure (ICP). Alteration of the arterial blood pressure showed opposite effects on VPR and CSF pulse pressure. A decrease in VPR and an increase in pulse pressure were observed during arterial hypotension; the reverse was found during arterial hypertension. The discrepancy between the effects on VPR and CSF pulse pressure of the variables under study was explained by changes in the transient increase in cerebral blood volume per cardiac cycle. On the basis of the results of this study it will be possible, during clinical ICP monitoring, to interpret changes in the CSF pulse pressure to ICP ratio in terms of changes in intracranial volume-pressure relationships.

Full text

PDF
222

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avezaat C. J., van Eijndhoven J. H., Wyper D. J. Cerebrospinal fluid pulse pressure and intracranial volume-pressure relationships. J Neurol Neurosurg Psychiatry. 1979 Aug;42(8):687–700. doi: 10.1136/jnnp.42.8.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bedford T. H. The effect of variations in the subarachnoid pressure on the venous pressure in the superior longitudinal sinus and in the torcular of the dog. J Physiol. 1942 Nov 30;101(3):362–368. doi: 10.1113/jphysiol.1942.sp003991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. GOLDENSOHN E. S., WHITEHEAD R. W., PARRY T. M., SPENCER J. N., GROVER R. F., DRAPER W. B. Studies on diffusion respiration. IX. Effect of diffusion respiration and high concentrations of CO2 on cerebrospinal fluid pressure of anesthetized dogs. Am J Physiol. 1951 May;165(2):334–340. doi: 10.1152/ajplegacy.1951.165.2.334. [DOI] [PubMed] [Google Scholar]
  4. Greenfield J. C., Jr, Tindall G. T. Effect of norepinephrine, epinephrine, and angiotensin on blood flow in the internal carotid artery of man. J Clin Invest. 1968 Jul;47(7):1672–1684. doi: 10.1172/JCI105858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Guinane J. E. Cerebrospinal fluid pulse pressure and brain compliance in adult cats. Neurology. 1975 Jun;25(6):559–564. doi: 10.1212/wnl.25.6.559. [DOI] [PubMed] [Google Scholar]
  6. HEDGES T. R., WEINSTEIN J. D. CEREBROVASCULAR RESPONSES TO INCREASED INTRACRANIAL PRESSURE. J Neurosurg. 1964 Apr;21:292–297. doi: 10.3171/jns.1964.21.4.0292. [DOI] [PubMed] [Google Scholar]
  7. Hamer J., Alberti E., Hoyer S., Wiedemann K. Influence of systemic and cerebral vascular factors on the cerebrospinal fluid pulse waves. J Neurosurg. 1977 Jan;46(1):36–45. doi: 10.3171/jns.1977.46.1.0036. [DOI] [PubMed] [Google Scholar]
  8. Harper A. M. Autoregulation of cerebral blood flow: influence of the arterial blood pressure on the blood flow through the cerebral cortex. J Neurol Neurosurg Psychiatry. 1966 Oct;29(5):398–403. doi: 10.1136/jnnp.29.5.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Häggendal E., Johansson B. Effects of arterial carbon dioxide tension and oxygen saturation on cerebral blood flow autoregulation in dogs. Acta Physiol Scand Suppl. 1965;258:27–53. doi: 10.1111/j.1748-1716.1965.tb03234.x. [DOI] [PubMed] [Google Scholar]
  10. LANGFITT T. W., KASSELL N. F., WEINSTEIN J. D. CEREBRAL BLOOD FLOW WITH INTRACRANIAL HYPERTENSION. Neurology. 1965 Aug;15:761–773. doi: 10.1212/wnl.15.8.761. [DOI] [PubMed] [Google Scholar]
  11. LANGFITT T. W., WEINSTEIN J. D., KASSELL N. F. CEREBRAL VASOMOTOR PARALYSIS PRODUCED BY INTRACRANIAL HYPERTENSION. Neurology. 1965 Jul;15:622–641. doi: 10.1212/wnl.15.7.622. [DOI] [PubMed] [Google Scholar]
  12. Langfitt T. W., Weinstein J. D., Kassell N. F., Gagliardi L. J., Shapiro H. M. Compression of cerebral vessels by intracranial hypertension. I. Dural sinus pressures. Acta Neurochir (Wien) 1966;15(3):212–222. doi: 10.1007/BF01406783. [DOI] [PubMed] [Google Scholar]
  13. Leech P., Miller J. D. Intracranial volume--pressure relationships during experimental brain compression in primates. 2. Effect of induced changes in systemic arterial pressure and cerebral blood flow. J Neurol Neurosurg Psychiatry. 1974 Oct;37(10):1099–1104. doi: 10.1136/jnnp.37.10.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leech P., Miller J. D. Intracranial volume--pressure relationships during experimental brain compression in primates. 3. Effect of mannitol and hyperventilation. J Neurol Neurosurg Psychiatry. 1974 Oct;37(10):1105–1111. doi: 10.1136/jnnp.37.10.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Löfgren J. Effects of variations in arterial pressure and arterial carbon dioxide tension on the cerebrospinal fluid pressure-volume relationships. Acta Neurol Scand. 1973;49(5):586–598. doi: 10.1111/j.1600-0404.1973.tb01332.x. [DOI] [PubMed] [Google Scholar]
  16. Miller J. D., Stanek A. E., Langfitt T. W. Cerebral blood flow regulation during experimental brain compression. J Neurosurg. 1973 Aug;39(2):186–196. doi: 10.3171/jns.1973.39.2.0186. [DOI] [PubMed] [Google Scholar]
  17. Olesen J. Quantitative evaluation of normal and pathologic cerebral blood flow regulation to perfusion pressure. Changes in man. Arch Neurol. 1973 Mar;28(3):143–149. doi: 10.1001/archneur.1973.00490210023001. [DOI] [PubMed] [Google Scholar]
  18. Olesen J. The effect of intracarotid epinephrine, norepinephrine, and angiotensin on the regional cerebral blood flow in man. Neurology. 1972 Sep;22(9):978–987. doi: 10.1212/wnl.22.9.978. [DOI] [PubMed] [Google Scholar]
  19. REIVICH M. ARTERIAL PCO2 AND CEREBRAL HEMODYNAMICS. Am J Physiol. 1964 Jan;206:25–35. doi: 10.1152/ajplegacy.1964.206.1.25. [DOI] [PubMed] [Google Scholar]
  20. Rowed D. W., Leech P. J., Reilly P. L., Miller J. D. Hypocapnia and intracranial volume-pressure relationship. A clinical and experimental study. Arch Neurol. 1975 Jun;32(6):369–373. doi: 10.1001/archneur.1975.00490480035003. [DOI] [PubMed] [Google Scholar]
  21. Severinghaus J. W. Blood gas calculator. J Appl Physiol. 1966 May;21(3):1108–1116. doi: 10.1152/jappl.1966.21.3.1108. [DOI] [PubMed] [Google Scholar]
  22. Symon L., Held K., Dorsch N. W. On the myogenic nature of the autoregulatory mechanism in the cerebral circulation. Eur Neurol. 1971;6(1):11–18. doi: 10.1159/000114458. [DOI] [PubMed] [Google Scholar]
  23. Symon L. Regional vascular reactivity in the middle cerebral arterial distribution. An experimental study in baboons. J Neurosurg. 1970 Nov;33(5):532–541. doi: 10.3171/jns.1970.33.5.0532. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES