Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1982 Jun;45(6):513–525. doi: 10.1136/jnnp.45.6.513

Stretch reflexes of triceps surae in normal man.

A Berardelli, M Hallett, C Kaufman, E Fine, W Berenberg, S R Simon
PMCID: PMC491428  PMID: 7119814

Abstract

In order to learn more about stretch reflex behaviour of triceps surae, normal human subjects sat in a chair with one foot on a platform attached to a torque motor that produced phasic dorsiflexion displacements on the ankle. EMG activity was recorded from triceps surae and responses were obtained for various conditions. When the subjects's foot was relaxed, stretch of triceps surae produced a single EMG component at short-latency which increased in magnitude with increasing velocity of stretch. The response was not altered if the subject was asked to plantarflex or dorsiflex the ankle voluntarily when he felt the perturbation. It was reduced by vibration of the Achilles tendon. If the triceps surae was stretched while the subject plantarflexed his ankle, the short-latency response was followed by one and sometimes two long-latency responses. Like the short-latency reflex when the foot was relaxed, none of these responses was altered by the subject's planned movement after feeling the perturbation. All of the responses were suppressed to a similar degree by vibration. The long-latency reflexes depended on long-duration of stretching and relatively slow acceleration of stretch. The reflexes persisted after anaesthesia to the foot suggesting that muscle afferents were responsible. Interactions between H-reflexes and stretch-reflexes revealed that the afferent volley producing a stretch reflex acted like the afferent volley producing a small H-reflex. Responses at an interval of 30 ms to both an electrical stimulus for an H-reflex and a stretch stimulus were possible if the electrical stimulus produced only a small H-reflex and if the subject had been plantarflexing the ankle. The short-latency reflex when the foot was relaxed or exerting a background force appears to be the monosynaptic, Ia mediated stretch reflex. The physiological properties of the long latency reflexes are similar to those of the short-latency reflex, and they may represent, at least to a certain extent, response of the motor neuron pool to successive Ia bursts.

Full text

PDF
515

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burke D., Hagbarth K. E., Löfstedt L., Wallin B. G. The responses of human muscle spindle endings to vibration during isometric contraction. J Physiol. 1976 Oct;261(3):695–711. doi: 10.1113/jphysiol.1976.sp011581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burke D., Hagbarth K. E., Löfstedt L., Wallin B. G. The responses of human muscle spindle endings to vibration of non-contracting muscles. J Physiol. 1976 Oct;261(3):673–693. doi: 10.1113/jphysiol.1976.sp011580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chan C. W., Jones G. M., Catchlove R. F. The 'late' electromyographic response to limb displacement in man. II. Sensory origin. Electroencephalogr Clin Neurophysiol. 1979 Feb;46(2):182–188. doi: 10.1016/0013-4694(79)90067-1. [DOI] [PubMed] [Google Scholar]
  4. Cooke J. D., Eastman M. J. Long-loop reflexes in the tranquilized monkey. Exp Brain Res. 1977 Apr 21;27(5):491–500. doi: 10.1007/BF00239038. [DOI] [PubMed] [Google Scholar]
  5. Crago P. E., Houk J. C., Hasan Z. Regulatory actions of human stretch reflex. J Neurophysiol. 1976 Sep;39(5):925–935. doi: 10.1152/jn.1976.39.5.925. [DOI] [PubMed] [Google Scholar]
  6. Evarts E. V., Tanji J. Reflex and intended responses in motor cortex pyramidal tract neurons of monkey. J Neurophysiol. 1976 Sep;39(5):1069–1080. doi: 10.1152/jn.1976.39.5.1069. [DOI] [PubMed] [Google Scholar]
  7. Ghez C., Shinoda Y. Spinal mechanisms of the functional stretch reflex. Exp Brain Res. 1978 May 12;32(1):55–68. doi: 10.1007/BF00237390. [DOI] [PubMed] [Google Scholar]
  8. Gottlieb G. L., Agarwal G. C. Response to sudden torques about ankle in man. II. Postmyotatic reactions. J Neurophysiol. 1980 Jan;43(1):86–101. doi: 10.1152/jn.1980.43.1.86. [DOI] [PubMed] [Google Scholar]
  9. Gottlieb G. L., Agarwal G. C. Response to sudden torques about ankle in man: myotatic reflex. J Neurophysiol. 1979 Jan;42(1 Pt 1):91–106. doi: 10.1152/jn.1979.42.1.91. [DOI] [PubMed] [Google Scholar]
  10. HAMMOND P. H. The influence of prior instruction to the subject on an apparently involuntary neuro-muscular response. J Physiol. 1956 Apr 27;132(1):17–8P. [PubMed] [Google Scholar]
  11. Hagbarth K. E., Hägglund J. V., Wallin E. U., Young R. R. Grouped spindle and electromyographic responses to abrupt wrist extension movements in man. J Physiol. 1981 Mar;312:81–96. doi: 10.1113/jphysiol.1981.sp013617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hendrie A., Lee R. G. Selective effects of vibration on human spinal and long-loop reflexes. Brain Res. 1978 Nov 24;157(2):369–375. doi: 10.1016/0006-8993(78)90044-6. [DOI] [PubMed] [Google Scholar]
  13. Hultborn H., Pierrot-Deseilligny E. Changes in recurrent inhibition during voluntary soleus contractions in man studied by an H-reflex technique. J Physiol. 1979 Dec;297(0):229–251. doi: 10.1113/jphysiol.1979.sp013037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jones G. M., Watt D. G. Observations on the control of stepping and hopping movements in man. J Physiol. 1971 Dec;219(3):709–727. doi: 10.1113/jphysiol.1971.sp009684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kirkwood P. A., Sears T. A. Monosynaptic excitation of motoneurones from secondary endings of muscle spindles. Nature. 1974 Nov 15;252(5480):243–244. doi: 10.1038/252243a0. [DOI] [PubMed] [Google Scholar]
  16. LANGUTH H. W., TEASDALL R. D., MAGLADERY J. W. Electrophysiological studies of reflex activity in patients with lesions of the nervous system. III. Motoneurone excitability following afferent nerve volleys in patients with rostrally adjacent spinal cord damage. Bull Johns Hopkins Hosp. 1952 Oct;91(4):257–passim. [PubMed] [Google Scholar]
  17. Lee R. G., Tatton W. G. Motor responses to sudden limb displacements in primates with specific CNS lesions and in human patients with motor system disorders. Can J Neurol Sci. 1975 Aug;2(3):285–293. doi: 10.1017/s0317167100020382. [DOI] [PubMed] [Google Scholar]
  18. Marsden C. D., Merton P. A., Morton H. B. Servo action in the human thumb. J Physiol. 1976 May;257(1):1–44. doi: 10.1113/jphysiol.1976.sp011354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Marsden C. D., Merton P. A., Morton H. B. Stretch reflex and servo action in a variety of human muscles. J Physiol. 1976 Jul;259(2):531–560. doi: 10.1113/jphysiol.1976.sp011481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Marsden C. D., Merton P. A., Morton H. B. The sensory mechanism of servo action in human muscle. J Physiol. 1977 Feb;265(2):521–535. doi: 10.1113/jphysiol.1977.sp011728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Matthews P. B. A reply to criticism of the hypothesis that the group II afferents contribute excitation to the stretch reflex. Acta Physiol Scand. 1970 Jul;79(3):431–433. doi: 10.1111/j.1748-1716.1970.tb04743.x. [DOI] [PubMed] [Google Scholar]
  22. Matthews P. B. Evidence that the secondary as well as the primary endings of the muscle spindles may be responsible for the tonic stretch reflex of the decerebrate cat. J Physiol. 1969 Oct;204(2):365–393. doi: 10.1113/jphysiol.1969.sp008918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McGrath G. J., Matthews P. B. Evidence from the use of vibration during procaine nerve block that the spindle group II fibres contribute excitation to the tonic stretch reflex of the decerebrate cat. J Physiol. 1973 Dec;235(2):371–408. doi: 10.1113/jphysiol.1973.sp010392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Munson J. B., Fleshman J. W., Sypert G. W. Properties of single-fiber spindle group II EPSPs in triceps surae motoneurons. J Neurophysiol. 1980 Oct;44(4):713–725. doi: 10.1152/jn.1980.44.4.713. [DOI] [PubMed] [Google Scholar]
  25. Nashner L. M. Adapting reflexes controlling the human posture. Exp Brain Res. 1976 Aug 27;26(1):59–72. doi: 10.1007/BF00235249. [DOI] [PubMed] [Google Scholar]
  26. Olsen P. Z., Diamantopoulos E. Excitability of spinal motor neurones in normal subjects and patients with spasticity, Parkinsonian rigidity, and cerebellar hypotonia. J Neurol Neurosurg Psychiatry. 1967 Aug;30(4):325–331. doi: 10.1136/jnnp.30.4.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pagni C. A., Ettorre G., Infuso L., Marossero F. [EMG responses to capsular stimulation in the human]. Experientia. 1964 Dec 15;20(12):691–692. doi: 10.1007/BF02145277. [DOI] [PubMed] [Google Scholar]
  28. Phillips C. G., Powell T. P., Wiesendanger M. Projection from low-threshold muscle afferents of hand and forearm to area 3a of baboon's cortex. J Physiol. 1971 Sep;217(2):419–446. doi: 10.1113/jphysiol.1971.sp009579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Phillips C. G. The Ferrier lecture, 1968. Motor apparatus of the baboon's hand. Proc R Soc Lond B Biol Sci. 1969 May 20;173(1031):141–174. doi: 10.1098/rspb.1969.0044. [DOI] [PubMed] [Google Scholar]
  30. Schomburg E. D., Behrends H. B. The possibility of phase-dependent monosynaptic and polysynaptic is excitation to homonymous motoneurones during fictive locomotion. Brain Res. 1978 Mar 31;143(3):533–537. doi: 10.1016/0006-8993(78)90363-3. [DOI] [PubMed] [Google Scholar]
  31. Starr A., McKeon B., Skuse N., Burke D. Cerebral potentials evoked by muscle stretch in man. Brain. 1981 Mar;104(Pt 1):149–166. doi: 10.1093/brain/104.1.149. [DOI] [PubMed] [Google Scholar]
  32. Stauffer E. K., Watt D. G., Taylor A., Reinking R. M., Stuart D. G. Analysis of muscle receptor connections by spike-triggered averaging. 2. Spindle group II afferents. J Neurophysiol. 1976 Nov;39(6):1393–1402. doi: 10.1152/jn.1976.39.6.1393. [DOI] [PubMed] [Google Scholar]
  33. Sypert G. W., Fleshman J. W., Munson J. B. Comparison of monosynaptic actions of medial gastrocnemius group Ia and group II muscle spindle afferents on triceps surae motoneurons. J Neurophysiol. 1980 Oct;44(4):726–738. doi: 10.1152/jn.1980.44.4.726. [DOI] [PubMed] [Google Scholar]
  34. Watt D. G., Stauffer E. K., Taylor A., Reinking R. M., Stuart D. G. Analysis of muscle receptor connections by spike-triggered averaging. 1. Spindle primary and tendon organ afferents. J Neurophysiol. 1976 Nov;39(6):1375–1392. doi: 10.1152/jn.1976.39.6.1375. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES