Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Jun 1;89(11):5053–5057. doi: 10.1073/pnas.89.11.5053

Regions of bacteriophage T4 and RB69 RegA translational repressor proteins that determine RNA-binding specificity.

C E Jozwik 1, E S Miller 1
PMCID: PMC49227  PMID: 1594613

Abstract

RegA protein of T4 and related bacteriophages is a highly conserved RNA-binding protein that represses the translation of many phage mRNAs that encode enzymes involved in DNA metabolism. RB69, a T4-related bacteriophage, has a unique regA gene, which we have cloned, sequenced, and expressed. The predicted amino acid sequence of RB69 RegA is 78% identical to that of T4 RegA. Plasmid-encoded RB69 RegA expressed in vivo represses the translation of T4 early mRNAs, including those of rIIA, rIIB, 44, 45, rpbA, and regA. Nucleotide sequences were determined for several T4 and RB69 regA mutations, and their corresponding repressor properties were characterized. All of the 10 missense mutations affect residues conserved between RB69 and T4 RegA. Two regions of RegA are especially sensitive to mutation: one between Val-15 and Ala-25 and another between Arg-70 and Ser-73. Sequence alignments and mutational data suggest that the region from Val-15 to Ala-25 is similar to helix-turn-helix domains of DNA-binding proteins and confers RNA-binding specificity upon RegA. The RegA691 protein (Ile-24----Thr) has an in vivo phenotype that appears to distinguish site-specific and cooperative binding modes of hierarchical RegA-mediated translational repression.

Full text

PDF
5056

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adari H. Y., Rose K., Williams K. R., Konigsberg W. H., Lin T. C., Spicer E. K. Cloning, nucleotide sequence, and overexpression of the bacteriophage T4 regA gene. Proc Natl Acad Sci U S A. 1985 Apr;82(7):1901–1905. doi: 10.1073/pnas.82.7.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andrake M. D., Karam J. D. Mutational analysis of the mRNA operator for T4 DNA polymerase. Genetics. 1991 Jun;128(2):203–213. doi: 10.1093/genetics/128.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bandziulis R. J., Swanson M. S., Dreyfuss G. RNA-binding proteins as developmental regulators. Genes Dev. 1989 Apr;3(4):431–437. doi: 10.1101/gad.3.4.431. [DOI] [PubMed] [Google Scholar]
  4. Calnan B. J., Tidor B., Biancalana S., Hudson D., Frankel A. D. Arginine-mediated RNA recognition: the arginine fork. Science. 1991 May 24;252(5009):1167–1171. doi: 10.1126/science.252.5009.1167. [DOI] [PubMed] [Google Scholar]
  5. Cardillo T. S., Landry E. F., Wiberg J. S. regA protein of bacteriophage T4D: identification, schedule of synthesis, and autogenous regulation. J Virol. 1979 Dec;32(3):905–916. doi: 10.1128/jvi.32.3.905-916.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gollnick P., Ishino S., Kuroda M. I., Henner D. J., Yanofsky C. The mtr locus is a two-gene operon required for transcription attenuation in the trp operon of Bacillus subtilis. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8726–8730. doi: 10.1073/pnas.87.22.8726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Houman F., Diaz-Torres M. R., Wright A. Transcriptional antitermination in the bgl operon of E. coli is modulated by a specific RNA binding protein. Cell. 1990 Sep 21;62(6):1153–1163. doi: 10.1016/0092-8674(90)90392-r. [DOI] [PubMed] [Google Scholar]
  10. Hsu T., Wei R. X., Dawson M., Karam J. D. Identification of two new bacteriophage T4 genes that may have roles in transcription and DNA replication. J Virol. 1987 Feb;61(2):366–374. doi: 10.1128/jvi.61.2.366-374.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jiang J., Gu B. H., Albright L. M., Nixon B. T. Conservation between coding and regulatory elements of Rhizobium meliloti and Rhizobium leguminosarum dct genes. J Bacteriol. 1989 Oct;171(10):5244–5253. doi: 10.1128/jb.171.10.5244-5253.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Karam J. D., Bowles M. G. Mutation to overproduction of bacteriophage T4 gene products. J Virol. 1974 Feb;13(2):428–438. doi: 10.1128/jvi.13.2.428-438.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Karam J., Gold L., Singer B. S., Dawson M. Translational regulation: identification of the site on bacteriophage T4 rIIB mRNA recognized by the regA gene function. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4669–4673. doi: 10.1073/pnas.78.8.4669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Liang Y. M., Wei R. X., Hsu T., Alford C., Dawson M., Karam J. Autogenous regulation of the regA gene of bacteriophage T4: derepression of translation. Genetics. 1988 Aug;119(4):743–749. doi: 10.1093/genetics/119.4.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McPheeters D. S., Stormo G. D., Gold L. Autogenous regulatory site on the bacteriophage T4 gene 32 messenger RNA. J Mol Biol. 1988 Jun 5;201(3):517–535. doi: 10.1016/0022-2836(88)90634-1. [DOI] [PubMed] [Google Scholar]
  16. Michel B., Zinder N. D. Translational repression in bacteriophage f1: characterization of the gene V protein target on the gene II mRNA. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4002–4006. doi: 10.1073/pnas.86.11.4002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miller E. S., Jozwik C. E. Sequence analysis of conserved regA and variable orf43.1 genes in T4-like bacteriophages. J Bacteriol. 1990 Sep;172(9):5180–5186. doi: 10.1128/jb.172.9.5180-5186.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miller E. S., Karam J., Dawson M., Trojanowska M., Gauss P., Gold L. Translational repression: biological activity of plasmid-encoded bacteriophage T4 RegA protein. J Mol Biol. 1987 Apr 5;194(3):397–410. doi: 10.1016/0022-2836(87)90670-x. [DOI] [PubMed] [Google Scholar]
  19. Miller E. S., Winter R. B., Campbell K. M., Power S. D., Gold L. Bacteriophage T4 regA protein. Purification of a translational repressor. J Biol Chem. 1985 Oct 25;260(24):13053–13059. [PubMed] [Google Scholar]
  20. Moine H., Romby P., Springer M., Grunberg-Manago M., Ebel J. P., Ehresmann B., Ehresmann C. Escherichia coli threonyl-tRNA synthetase and tRNA(Thr) modulate the binding of the ribosome to the translational initiation site of the thrS mRNA. J Mol Biol. 1990 Nov 20;216(2):299–310. doi: 10.1016/S0022-2836(05)80321-3. [DOI] [PubMed] [Google Scholar]
  21. Pabo C. O., Sauer R. T. Protein-DNA recognition. Annu Rev Biochem. 1984;53:293–321. doi: 10.1146/annurev.bi.53.070184.001453. [DOI] [PubMed] [Google Scholar]
  22. Romaniuk P. J., Lowary P., Wu H. N., Stormo G., Uhlenbeck O. C. RNA binding site of R17 coat protein. Biochemistry. 1987 Mar 24;26(6):1563–1568. doi: 10.1021/bi00380a011. [DOI] [PubMed] [Google Scholar]
  23. Ronson C. W., Nixon B. T., Ausubel F. M. Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell. 1987 Jun 5;49(5):579–581. doi: 10.1016/0092-8674(87)90530-7. [DOI] [PubMed] [Google Scholar]
  24. Ruckman J., Parma D., Tuerk C., Hall D. H., Gold L. Identification of a T4 gene required for bacteriophage mRNA processing. New Biol. 1989 Oct;1(1):54–65. [PubMed] [Google Scholar]
  25. Russell R. L., Huskey R. J. Partial exclusion between T-even bacteriophages: an incipient genetic isolation mechanism. Genetics. 1974 Dec;78(4):989–1014. doi: 10.1093/genetics/78.4.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Szewczak A. A., Webster K. R., Spicer E. K., Moore P. B. An NMR characterization of the regA protein-binding site of bacteriophage T4 gene 44 mRNA. J Biol Chem. 1991 Sep 25;266(27):17832–17837. [PubMed] [Google Scholar]
  27. Tang C. K., Draper D. E. Unusual mRNA pseudoknot structure is recognized by a protein translational repressor. Cell. 1989 May 19;57(4):531–536. doi: 10.1016/0092-8674(89)90123-2. [DOI] [PubMed] [Google Scholar]
  28. Trojanowska M., Miller E. S., Karam J., Stormo G., Gold L. The bacteriophage T4 regA gene: primary sequence of a translational repressor. Nucleic Acids Res. 1984 Aug 10;12(15):5979–5993. doi: 10.1093/nar/12.15.5979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tuerk C., Eddy S., Parma D., Gold L. Autogenous translational operator recognized by bacteriophage T4 DNA polymerase. J Mol Biol. 1990 Jun 20;213(4):749–761. doi: 10.1016/S0022-2836(05)80261-X. [DOI] [PubMed] [Google Scholar]
  30. Unnithan S., Green L., Morrissey L., Binkley J., Singer B., Karam J., Gold L. Binding of the bacteriophage T4 regA protein to mRNA targets: an initiator AUG is required. Nucleic Acids Res. 1990 Dec 11;18(23):7083–7092. doi: 10.1093/nar/18.23.7083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Varani G., Cheong C., Tinoco I., Jr Structure of an unusually stable RNA hairpin. Biochemistry. 1991 Apr 2;30(13):3280–3289. doi: 10.1021/bi00227a016. [DOI] [PubMed] [Google Scholar]
  32. Webster K. R., Adari H. Y., Spicer E. K. Bacteriophage T4 regA protein binds to the Shine-Dalgarno region of gene 44 mRNA. Nucleic Acids Res. 1989 Dec 11;17(23):10047–10068. doi: 10.1093/nar/17.23.10047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wiberg J. S., Mendelsohn S. L., Warner V., Aldrich C., Cardillo T. S. Genetic mapping of regA mutants of bacteriophage T4D. J Virol. 1977 Jun;22(3):742–749. doi: 10.1128/jvi.22.3.742-749.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Winter R. B., Morrissey L., Gauss P., Gold L., Hsu T., Karam J. Bacteriophage T4 regA protein binds to mRNAs and prevents translation initiation. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7822–7826. doi: 10.1073/pnas.84.22.7822. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES