Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Jun 1;89(11):5063–5067. doi: 10.1073/pnas.89.11.5063

Crossmodal changes in the somatosensory vibrissa/barrel system of visually deprived animals.

J P Rauschecker 1, B Tian 1, M Korte 1, U Egert 1
PMCID: PMC49229  PMID: 1594614

Abstract

Cats deprived of vision from birth adapt remarkably well to their situation and show little behavioral impairment. They seem to compensate for their lack of vision by relying more on their auditory and tactile senses. We report here that the facial vibrissae, which are most important for tactile orientation in many animals, show supernormal growth in both cats and mice that have been deprived of vision from birth. Furthermore, the whisker representation in the somatosensory cortical barrel field shows a concomitant enlargement in binocularly enucleated mice: individual barrels are expanded in size by up to one-third. The increased use of the vibrissae in visually deprived animals may stimulate both their own growth and, via activation of the respective neural pathways, the expansion of their central representation.

Full text

PDF
5064

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asanuma C., Stanfield B. B. Induction of somatic sensory inputs to the lateral geniculate nucleus in congenitally blind mice and in phenotypically normal mice. Neuroscience. 1990;39(3):533–545. doi: 10.1016/0306-4522(90)90241-u. [DOI] [PubMed] [Google Scholar]
  2. Carlson S., Pertovaara A., Tanila H. Late effects of early binocular visual deprivation on the function of Brodmann's area 7 of monkeys (Macaca arctoides). Brain Res. 1987 May;430(1):101–111. doi: 10.1016/0165-3806(87)90180-5. [DOI] [PubMed] [Google Scholar]
  3. Dehay C., Horsburgh G., Berland M., Killackey H., Kennedy H. The effects of bilateral enucleation in the primate fetus on the parcellation of visual cortex. Brain Res Dev Brain Res. 1991 Sep 19;62(1):137–141. doi: 10.1016/0165-3806(91)90199-s. [DOI] [PubMed] [Google Scholar]
  4. Guillery R. W. Binocular competition in the control of geniculate cell growth. J Comp Neurol. 1972 Jan;144(1):117–129. doi: 10.1002/cne.901440106. [DOI] [PubMed] [Google Scholar]
  5. Gyllensten L., Malmfors T., Norrlin M. L. Growth alteration in the auditory cortex of visually deprived mice. J Comp Neurol. 1966 Mar;126(3):463–469. doi: 10.1002/cne.901260308. [DOI] [PubMed] [Google Scholar]
  6. KELLOGG W. N. Sonar system of the blind. Science. 1962 Aug 10;137(3528):399–404. doi: 10.1126/science.137.3528.399. [DOI] [PubMed] [Google Scholar]
  7. Kaas J. H., Merzenich M. M., Killackey H. P. The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. Annu Rev Neurosci. 1983;6:325–356. doi: 10.1146/annurev.ne.06.030183.001545. [DOI] [PubMed] [Google Scholar]
  8. Killackey Herbert P., Dawson Douglas R. Expansion of the Central Hindpaw Representation Following Fetal Forelimb Removal in the Rat. Eur J Neurosci. 1989 May;1(3):210–221. doi: 10.1111/j.1460-9568.1989.tb00790.x. [DOI] [PubMed] [Google Scholar]
  9. Landau B., Gleitman H., Spelke E. Spatial knowledge and geometric representation in a child blind from birth. Science. 1981 Sep 11;213(4513):1275–1278. doi: 10.1126/science.7268438. [DOI] [PubMed] [Google Scholar]
  10. Lee K. J., Woolsey T. A. A proportional relationship between peripheral innervation density and cortical neuron number in the somatosensory system of the mouse. Brain Res. 1975 Dec 5;99(2):349–353. doi: 10.1016/0006-8993(75)90035-9. [DOI] [PubMed] [Google Scholar]
  11. Neville H. J., Schmidt A., Kutas M. Altered visual-evoked potentials in congenitally deaf adults. Brain Res. 1983 Apr 25;266(1):127–132. doi: 10.1016/0006-8993(83)91314-8. [DOI] [PubMed] [Google Scholar]
  12. Pons T. P., Garraghty P. E., Ommaya A. K., Kaas J. H., Taub E., Mishkin M. Massive cortical reorganization after sensory deafferentation in adult macaques. Science. 1991 Jun 28;252(5014):1857–1860. doi: 10.1126/science.1843843. [DOI] [PubMed] [Google Scholar]
  13. Rakic P. Specification of cerebral cortical areas. Science. 1988 Jul 8;241(4862):170–176. doi: 10.1126/science.3291116. [DOI] [PubMed] [Google Scholar]
  14. Rakic P., Suñer I., Williams R. W. A novel cytoarchitectonic area induced experimentally within the primate visual cortex. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2083–2087. doi: 10.1073/pnas.88.6.2083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rauschecker J. P., Harris L. R. Auditory compensation of the effects of visual deprivation in the cat's superior colliculus. Exp Brain Res. 1983;50(1):69–83. doi: 10.1007/BF00238233. [DOI] [PubMed] [Google Scholar]
  16. Rauschecker J. P. Mechanisms of visual plasticity: Hebb synapses, NMDA receptors, and beyond. Physiol Rev. 1991 Apr;71(2):587–615. doi: 10.1152/physrev.1991.71.2.587. [DOI] [PubMed] [Google Scholar]
  17. Simons D. J., Land P. W. Early experience of tactile stimulation influences organization of somatic sensory cortex. Nature. 1987 Apr 16;326(6114):694–697. doi: 10.1038/326694a0. [DOI] [PubMed] [Google Scholar]
  18. Strominger R. N., Woolsey T. A. Templates for locating the whisker area in fresh flattened mouse and rat cortex. J Neurosci Methods. 1987 Dec;22(2):113–118. doi: 10.1016/0165-0270(87)90004-5. [DOI] [PubMed] [Google Scholar]
  19. Veraart C., De Volder A. G., Wanet-Defalque M. C., Bol A., Michel C., Goffinet A. M. Glucose utilization in human visual cortex is abnormally elevated in blindness of early onset but decreased in blindness of late onset. Brain Res. 1990 Feb 26;510(1):115–121. doi: 10.1016/0006-8993(90)90735-t. [DOI] [PubMed] [Google Scholar]
  20. Vidyasagar T. R. Possible plasticity in the rat superior colliculus. Nature. 1978 Sep 14;275(5676):140–141. doi: 10.1038/275140a0. [DOI] [PubMed] [Google Scholar]
  21. Welker E., Van der Loos H. Quantitative correlation between barrel-field size and the sensory innervation of the whiskerpad: a comparative study in six strains of mice bred for different patterns of mystacial vibrissae. J Neurosci. 1986 Nov;6(11):3355–3373. doi: 10.1523/JNEUROSCI.06-11-03355.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wiesel T. N., Hubel D. H. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol. 1965 Nov;28(6):1029–1040. doi: 10.1152/jn.1965.28.6.1029. [DOI] [PubMed] [Google Scholar]
  23. Wong-Riley M. Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res. 1979 Jul 27;171(1):11–28. doi: 10.1016/0006-8993(79)90728-5. [DOI] [PubMed] [Google Scholar]
  24. Woolsey T. A., Van der Loos H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 1970 Jan 20;17(2):205–242. doi: 10.1016/0006-8993(70)90079-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES