Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1970 Jun;33(3):310–318. doi: 10.1136/jnnp.33.3.310

The role of diffusion barriers in determining the excitability of peripheral nerve

K N Seneviratne 1,2,3, O A Peiris 1,2,3
PMCID: PMC493475  PMID: 5431723

Abstract

The excitability changes occurring in normal isolated peripheral nerves of rats have been studied during exposure to hypoxic and anoxic conditions before and after the administration of insulin. The changes observed have been explained in terms of the dynamics of K' equilibrium in the periaxonal spaces, and attention is drawn to the importance of the relative impermeability of the periaxonal diffusion barrier in determining this equilibrium. Isolated peripheral nerves from alloxan-diabetic rats, studied under similar conditions, show significant differences in the sequence of their excitability changes. It has been shown that the rate of change of excitability in these nerves is slower than those of control nerves. These results have now been interpreted in terms of the K' changes in the periaxonal space. It is concluded that these slower excitability changes are due to an increase in the permeability of the diffusion barrier of the diabetic nerve to potassium.

Full text

PDF
315

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADRIAN R. H. The effect of internal and external potassium concentration on the membrane potential of frog muscle. J Physiol. 1956 Sep 27;133(3):631–658. doi: 10.1113/jphysiol.1956.sp005615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bischoff A. Diabetic neuropathy. Morbid anatomy, patho-physiology and pathogenesis based on electron-microscopic findings. Ger Med Mon. 1968 May;13(5):214–passim. [PubMed] [Google Scholar]
  3. CAUSEY G., PALMER E. The epineural sheath of a nerve as a barrier to the diffusion of phosphate ions. J Anat. 1953 Jan;87(1):30–36. [PMC free article] [PubMed] [Google Scholar]
  4. CRESCITELLI F. Nerve sheath as a barrier to the action of certain substances. Am J Physiol. 1951 Aug;166(2):229–240. doi: 10.1152/ajplegacy.1951.166.2.229. [DOI] [PubMed] [Google Scholar]
  5. Castaigne P., Cathala H. P., Dry J., Mastropaolo C. Les réponses der nerfs et des muscles à des stimulations électriques AU COURS D'une epreuve de garrot ischémique chez l'homme normal et chez le diabétique. Rev Neurol (Paris) 1966 Jul;115(1):61–66. [PubMed] [Google Scholar]
  6. DAINTY J., KRNJEVIC K. The rate of exchange of 24Na in cat nerves. J Physiol. 1955 Jun 28;128(3):489–503. doi: 10.1113/jphysiol.1955.sp005320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. ENGERMAN R. L., BLOODWORTH J. M., Jr EXPERIMENTAL DIABETIC RETINOPATHY IN DOGS. Arch Ophthalmol. 1965 Feb;73:205–210. doi: 10.1001/archopht.1965.00970030207013. [DOI] [PubMed] [Google Scholar]
  8. FENG T. P., LIU Y. M. The connective tissue sheath of the nerve as effective diffusion barrier. J Cell Physiol. 1949 Aug;34(1):1–16. doi: 10.1002/jcp.1030340102. [DOI] [PubMed] [Google Scholar]
  9. FENN W. O., GERSCHMAN R. The loss of potassium from frog nerves in anoxia and other conditions. J Gen Physiol. 1950 Jan 20;33(3):195–203. doi: 10.1085/jgp.33.3.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FIELD R. A., ADAMS L. C. INSULIN RESPONSE OF PERIPHERAL NERVE. I. EFFECTS ON GLUCOSE METABOLISM AND PERMEABILITY. Medicine (Baltimore) 1964 May;43:275–279. doi: 10.1097/00005792-196405000-00006. [DOI] [PubMed] [Google Scholar]
  11. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. FULLERTON P. M. THE EFFECT OF ISCHAEMIA ON NERVE CONDUCTION IN THE CARPAL TUNNEL SYNDROME. J Neurol Neurosurg Psychiatry. 1963 Oct;26:385–397. doi: 10.1136/jnnp.26.5.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GAMBLE H. J. COMPARATIVE ELECTRON-MICROSCOPIC OBSERVATIONS ON THE CONNECTIVE TISSUES OF A PERIPHERAL NERVE AND A SPINAL NERVE ROOT IN THE RAT. J Anat. 1964 Jan;98:17–26. [PMC free article] [PubMed] [Google Scholar]
  14. Gregersen G. A study of the peripheral nerves in diabetic subjects during ischaemia. J Neurol Neurosurg Psychiatry. 1968 Apr;31(2):175–181. doi: 10.1136/jnnp.31.2.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HUXLEY A. F., STAMPFLI R. Effect of potassium and sodium on resting and action potentials of single myelinated nerve fibers. J Physiol. 1951 Feb;112(3-4):496–508. doi: 10.1113/jphysiol.1951.sp004546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Haftek J., Thomas P. K. Electron-microscope observations on the effects of localized crush injuries on the connective tissues of peripheral nerve. J Anat. 1968 Sep;103(Pt 2):233–243. [PMC free article] [PubMed] [Google Scholar]
  17. KIMIZUKA H., KOKETSU K. CHANGES IN THE MEMBRANE PERMEABILITY OF FROG'S SARTORIUS MUSCLE FIBERS IN CA-FREE EDTA SOLUTION. J Gen Physiol. 1963 Nov;47:379–392. doi: 10.1085/jgp.47.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. KRNJEVIC K. The distribution of Na and K in cat nerves. J Physiol. 1955 Jun 28;128(3):473–488. doi: 10.1113/jphysiol.1955.sp005319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Maruhashi J., Wright E. B. Effect of oxygen lack on the single isolated mammalian (rat) nerve fiber. J Neurophysiol. 1967 May;30(3):434–452. doi: 10.1152/jn.1967.30.3.434. [DOI] [PubMed] [Google Scholar]
  20. NATHANIEL E. J., PEASE D. C. COLLAGEN AND BASEMENT MEMBRANE FORMATION BY SCHWANN CELLS DURING NERVE REGENERATION. J Ultrastruct Res. 1963 Dec;52:550–560. doi: 10.1016/s0022-5320(63)80084-2. [DOI] [PubMed] [Google Scholar]
  21. RASHBASS C., RUSHTON W. A. H. The relation of structure to the spread of excitation in the frog's sciatic trunk. J Physiol. 1949 Dec 15;110(1-2):110–135. doi: 10.1113/jphysiol.1949.sp004426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SHANES A. M. Potassium movement in relation to nerve activity. J Gen Physiol. 1951 Jul;34(6):795–807. doi: 10.1085/jgp.34.6.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. SPIRO R. G. Glycoproteins and diabetes. Diabetes. 1963 May-Jun;12:223–230. doi: 10.2337/diab.12.3.223. [DOI] [PubMed] [Google Scholar]
  24. STEINESS I. Influence of diabetic status on vibratory perception during ischaemia. Acta Med Scand. 1961 Sep;170:319–338. doi: 10.1111/j.0954-6820.1961.tb00245.x. [DOI] [PubMed] [Google Scholar]
  25. STEINESS I. Vibratory perception in diabetics during arrested blood flow to the limb. Acta Med Scand. 1959 Mar 4;163(3):195–205. doi: 10.1111/j.0954-6820.1959.tb10400.x. [DOI] [PubMed] [Google Scholar]
  26. Seneviratne K. N., Peiris O. A. The effect of ischaemia on the excitability of human sensory nerve. J Neurol Neurosurg Psychiatry. 1968 Aug;31(4):338–347. doi: 10.1136/jnnp.31.4.338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Seneviratne K. N., Peiris O. A. The effect of ischaemia on the excitability of sensory nerves in diabetes mellitus. J Neurol Neurosurg Psychiatry. 1968 Aug;31(4):348–353. doi: 10.1136/jnnp.31.4.348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. THOMAS P. K. The connective tissue of peripheral nerve: an electron microscope study. J Anat. 1963 Jan;97:35–44. [PMC free article] [PubMed] [Google Scholar]
  29. ZIERLER K. L. Effect of insulin on membrane potential and potassium content of rat muscle. Am J Physiol. 1959 Sep;197:515–523. doi: 10.1152/ajplegacy.1959.197.3.515. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES