Abstract
Pyrrolidine and 1,2,3,4-tetrahydroisoquinoline (THIQ) undergo redox-neutral α-amidation with concurrent N-alkylation upon reaction with aromatic aldehydes and isocyanides. Reactions are promoted by acetic acid and represent a new variant of the Ugi-reaction.
Graphical abstract
Ugi reactions are among the most powerful multicomponent transformations; their many variants provide rapid access to a remarkable wealth of structures.1 Reactions of isocyanides with secondary amines and aldehydes/ketones represent a special case, as the prototypical Mumm rearrangement cannot take place.2
(1) |
(2) |
(3) |
(4) |
(5) |
In recent years, a number of oxidative Ugi-variants have been reported.3 Secondary amines can be oxidized in situ to the corresponding imines which subsequently participate in typical Ugi reactions that provide diamide products (eq. 1). When tertiary amines are used as starting materials, oxidation leads to iminium ions that are subsequently trapped by an isocyanide. In the presence of a carboxylic acid reaction partner, imides are obtained as the final products (eq. 2). Alternatively, the intermediate nitrilium ion can be trapped by water, leading to the formation of aminoamides (eq. 3). Mechanistically distinct from the reactions outlined in eqs 1–3, a decarboxylative version of the Ugi reaction was recently reported, employing proline as the starting material (eq 4).4,5 Here we report a new type of Ugi-variant that enables the α-amidation of cyclic amines via redox-neutral α-C–H bond functionalization (eq 5).6,7
As part of a continuing program, our group developed a range of transformations that enable the redox-neutral α-C–H bond functionalization of amines.8–10 As is commonly the case in a number of classic name reactions such as the Strecker, Mannich and Friedel-Crafts reactions, these redox-reactions involve the condensation of a secondary amine with an aldehyde/ketone in the presence of a (pro)nucleophile. C–H functionalization is achieved via an isomerization step in which azomethine ylides feature as reactive intermediates.8a Carboxylic acids play important roles as catalysts or promotors in most of these transformations. The scope of this chemistry was shown to be remarkably broad and includes intra- and intermolecular variants.
In order to determine whether our general concept is applicable to Ugi-type reactions with isocyanides as the nucleophiles, we selected pyrrolidine, fluorenone and cyclohexyl isocyanide as test substrates. While we have recently identified 2,6-dichlorobenzaldehyde as an efficient carbonyl reaction partner for pyrrolidine in these types of transformations, it was subsequently shown by Jana et al. that fluorenone is particularly suitable to bring about redox-isomerization,9c a prerequisite for C–H functionalization. Key results of our initial survey are summarized in Table 1. Heating of a 5:2:1 mixture of pyrrolidine, fluorenone and cyclohexyl isocyanide under reflux in toluene resulted in the formation of desired product 1a in trace amounts only (entry 1). Addition of acetic acid (20 mol%) allowed for the isolation of 1a in 6% yield (entry 2). A gradual increase in the amount of acetic acid led to dramatically improved results, with 5 equivalents proving optimal (entry 4). Xylenes, n-butanol and DMF were inferior to toluene as the solvent (entries 6–8). 2-Ethylhexanoic acid and benzoic acid were also capable of promoting the title transformation but did so less effectively than acetic acid (entries 9, 10).11 A significant improvement in efficiency was observed upon increasing the concentration from 0.1 to 0.25 molar. In this instance, product 1a was isolated in 89% yield (entry 11). A further increase in molarity to 0.5 led to a reduction in yield (entry 12). Lowering the amount of pyrrolidine from five to three equivalents also led to a drop in yield (entry 13). Interestingly, addition of 10 equivalents of water (later shown to be beneficial for most substrate combinations, vide infra) had little effect on the overall transformation (entry 14).12
Table 1.
| ||||
---|---|---|---|---|
entry | solvent (molarity) |
additive (equiv) |
time [h] |
yield 1a (%) |
1 | PhMe (0.1) | – | 36 | trace |
2 | PhMe (0.1) | AcOH (0.2) | 48 | 6 |
3 | PhMe (0.1) | AcOH (1) | 48 | 28 |
4 | PhMe (0.1) | AcOH (5) | 20 | 73 |
5 | PhMe (0.1) | AcOH (10) | 20 | 52 |
6 | xylenes (0.1) | AcOH (5) | 20 | 53 |
7 | n-BuOH (0.1) | AcOH (5) | 20 | 55 |
8b | DMF (0.1) | AcOH (5) | 18 | 52 |
9 | PhMe (0.1) | 2-EHA (5) | 20 | 32 |
10 | PhMe (0.1) | BzOH (5) | 20 | 63 |
11 | PhMe (0.25) | AcOH (5) | 18 | 89 |
12 | PhMe (0.5) | AcOH (5) | 15 | 75 |
13c | PhMe (0.25) | AcOH (5) | 20 | 53 |
14d | PhMe (0.25) | AcOH (5) | 20 | 85 |
Reactions were performed with 0.5 mmol of cyclohexylisocyanide. Yields are isolated yields of chromatographically purified compounds.
Reaction was performed at 135 °C.
With 3 equiv of pyrrolidine.
With 10 equiv of H2O.
The scope of the new transformation was evaluated under the optimized conditions (Scheme 1). Isocyanides other than cyclohexyl isocyanide engaged in redox-Ugi reactions with pyrrolidine and THIQ. In addition to fluorenone, mesitaldehyde and 2,6-dichlorobenzaldehyde were viable substrates in reactions with pyrrolidine. The scope of the aldehyde in reactions with THIQ was found to be broad. Aromatic aldehydes with various substitution patterns provided moderate to good yields of amide products. Electron-donating and electron-withdrawing substituents in all ring positions were well tolerated. In addition, heterocyclic aldehydes also participated in redox-Ugi reactions.
Selected redox-Ugi products were subjected to a number of subsequent transformations. Cleavage of the N-benzyl group in 1h was achieved via hydrogenolysis to provide tetrahydroisoquinoline 2 in 65% yield. Interestingly, under the reaction conditions, N-ethyl product 3 was obtained as a byproduct in 20% yield. Exposure of 1k to Pd/C in the absence of hydrogen gas under reflux in mesitylene led to cleavage of the PMB group and aromatization of the ring system to provide isoquinoline 4 in 71% yield.
In conclusion, we have demonstrated the ability of isocyanides to act as nucleophiles in Ugi-type reactions that incorporate an amine α-C–H bond functionalization step. This process is facilitated by simple acetic acid.
(6) |
(7) |
Supplementary Material
Acknowledgments
Financial support from the NIH–NIGMS (R01GM101389) is gratefully acknowledged. We thank Dr. Tom Emge (Rutgers University) for crystallographic analysis.
Footnotes
Supporting Information
Experimental procedures and characterization data, including an X-ray crystal structure of product 1k (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.
References
- 1.Selected reviews on the Ugi reaction:; a) Dömling A, Ugi I. Angew Chem Int Ed. 2000;39:3168. doi: 10.1002/1521-3773(20000915)39:18<3168::aid-anie3168>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]; b) Zhu J. Eur J Org Chem. 2003;2003:1133. [Google Scholar]; c) Dömling A. Chem Rev. 2006;106:17. doi: 10.1021/cr0505728. [DOI] [PubMed] [Google Scholar]; d) Akritopoulou-Zanze I. Curr Opin Chem Biol. 2008;12:324. doi: 10.1016/j.cbpa.2008.02.004. [DOI] [PubMed] [Google Scholar]; e) El Kaim L, Grimaud L. Tetrahedron. 2009;65:2153. [Google Scholar]; f) Dömling A, Wang W, Wang K. Chem Rev. 2012;112:3083. doi: 10.1021/cr100233r. [DOI] [PMC free article] [PubMed] [Google Scholar]; g) Nenajdenko VG, editor. Isocyanide Chemistry: Applications in Synthesis and Material Science. Wiley-VCH; Weinheim: 2012. [Google Scholar]; h) Van Berkel SS, Bögels BGM, Wijdeven MA, Westermann B, Rutjes FPJT. Eur J Org Chem. 2012;3543 [Google Scholar]; i) Rotstein BH, Zaretsky S, Rai V, Yudin AK. Chem Rev. 2014;114:8323. doi: 10.1021/cr400615v. [DOI] [PubMed] [Google Scholar]; j) El Kaïm L, Grimaud L. Eur J Org Chem. 2014;2014:7749. [Google Scholar]; k) Sharma UK, Sharma N, Vachhani DD, Van Der Eycken EV. Chem Soc Rev. 2015;44:1836. doi: 10.1039/c4cs00253a. [DOI] [PubMed] [Google Scholar]
- 2.Tron GC. Eur J Org Chem. 2013;1849 [Google Scholar]
- 3.Examples of Ugi reactions that involve oxidative amine C–H functionalization:; a) Ngouansavanh T, Zhu J. Angew Chem Int Ed. 2007;46:5775. doi: 10.1002/anie.200701603. [DOI] [PubMed] [Google Scholar]; b) Jiang G, Chen J, Huang J-S, Che C-M. Org Lett. 2009;11:4568. doi: 10.1021/ol9018166. [DOI] [PubMed] [Google Scholar]; c) Ye X, Xie C, Pan Y, Han L, Xie T. Org Lett. 2010;12:4240. doi: 10.1021/ol101576q. [DOI] [PubMed] [Google Scholar]; d) Ye X, Xie C, Huang R, Liu J. Synlett. 2012;2012:409. [Google Scholar]; e) Rueping M, Vila C. Org Lett. 2013;15:2092. doi: 10.1021/ol400317v. [DOI] [PubMed] [Google Scholar]; f) Chen Y, Feng G. Org Biomol Chem. 2015;13:4260. doi: 10.1039/c5ob00201j. [DOI] [PubMed] [Google Scholar]; g) de Graaff C, Bensch L, van Lint MJ, Ruijter E, Orru RVA. Org Biomol Chem. 2015;13:10108. doi: 10.1039/c5ob01519g. [DOI] [PubMed] [Google Scholar]
- 4.Dighe SU, K S, A K, Srivastava S, Shukla P, Singh S, Dikshit M, Batra S. J Org Chem. 2015;80:99. doi: 10.1021/jo502029k. [DOI] [PubMed] [Google Scholar]
- 5.Examples of related decarboxylative coupling reactions:; a) Cohen N, Blount JF, Lopresti RJ, Trullinger DP. J Org Chem. 1979;44:4005. [Google Scholar]; b) Zheng L, Yang F, Dang Q, Bai X. Org Lett. 2008;10:889. doi: 10.1021/ol703049j. [DOI] [PubMed] [Google Scholar]; c) Zhang C, Seidel D. J Am Chem Soc. 2010;132:1798. doi: 10.1021/ja910719x. [DOI] [PubMed] [Google Scholar]; d) Bi H-P, Teng Q, Guan M, Chen W-W, Liang Y-M, Yao X, Li C-J. J Org Chem. 2010;75:783. doi: 10.1021/jo902319h. [DOI] [PubMed] [Google Scholar]; e) Zhang C, Das D, Seidel D. Chem Sci. 2011;2:233. [Google Scholar]; f) Yang D, Zhao D, Mao L, Wang L, Wang R. J Org Chem. 2011;76:6426. doi: 10.1021/jo200981h. [DOI] [PubMed] [Google Scholar]; g) Das D, Richers MT, Ma L, Seidel D. Org Lett. 2011;13:6584. doi: 10.1021/ol202957d. [DOI] [PubMed] [Google Scholar]; h) Firouzabadi H, Iranpoor N, Ghaderi A, Ghavami M. Tetrahedron Lett. 2012;53:5515. [Google Scholar]; i) Richers MT, Deb I, Platonova AY, Zhang C, Seidel D. Synthesis. 2013;45:1730. [PMC free article] [PubMed] [Google Scholar]; j) Kaboudin B, Karami L, Kato JY, Aoyama H, Yokomatsu T. Tetrahedron Lett. 2013;54:4872. [Google Scholar]; k) Manjappa KB, Jhang W-F, Huang S-Y, Yang D-Y. Org Lett. 2014;16:5690. doi: 10.1021/ol5027574. [DOI] [PubMed] [Google Scholar]; l) Samala S, Singh G, Kumar R, Ampapathi RS, Kundu B. Angew Chem Int Ed. 2015;54:9564. doi: 10.1002/anie.201504429. [DOI] [PubMed] [Google Scholar]; m) Jin ZN, Jiang HJ, Wu JS, Gong WZ, Cheng Y, Xiang J, Zhou QZ. Tetrahedron Lett. 2015;56:2720. [Google Scholar]; n) Tang M, Tong L, Ju L, Zhai W, Hu Y, Yu X. Org Lett. 2015;17:5180. doi: 10.1021/acs.orglett.5b02484. [DOI] [PubMed] [Google Scholar]
- 6.Selected reviews on amine C–H functionalization including redox-neutral approaches:; a) Murahashi S-I. Angew Chem Int Ed Engl. 1995;34:2443. [Google Scholar]; b) Matyus P, Elias O, Tapolcsanyi P, Polonka-Balint A, Halasz-Dajka B. Synthesis. 2006;2625 [Google Scholar]; c) Campos KR. Chem Soc Rev. 2007;36:1069. doi: 10.1039/b607547a. [DOI] [PubMed] [Google Scholar]; d) Murahashi S-I, Zhang D. Chem Soc Rev. 2008;37:1490. doi: 10.1039/b706709g. [DOI] [PubMed] [Google Scholar]; e) Li CJ. Acc Chem Res. 2009;42:335. doi: 10.1021/ar800164n. [DOI] [PubMed] [Google Scholar]; f) Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Chem Eur J. 2010;16:2654. doi: 10.1002/chem.200902374. [DOI] [PubMed] [Google Scholar]; g) Yeung CS, Dong VM. Chem Rev. 2011;111:1215. doi: 10.1021/cr100280d. [DOI] [PubMed] [Google Scholar]; h) Pan SC. Beilstein J Org Chem. 2012;8:1374. doi: 10.3762/bjoc.8.159. [DOI] [PMC free article] [PubMed] [Google Scholar]; i) Mitchell EA, Peschiulli A, Lefevre N, Meerpoel L, Maes BUW. Chem Eur J. 2012;18:10092. doi: 10.1002/chem.201201539. [DOI] [PubMed] [Google Scholar]; j) Zhang C, Tang C, Jiao N. Chem Soc Rev. 2012;41:3464. doi: 10.1039/c2cs15323h. [DOI] [PubMed] [Google Scholar]; k) Jones KM, Klussmann M. Synlett. 2012;23:159. [Google Scholar]; l) Peng B, Maulide N. Chem Eur J. 2013;19:13274. doi: 10.1002/chem.201301522. [DOI] [PubMed] [Google Scholar]; m) Platonova AY, Glukhareva TV, Zimovets OA, Morzherin YY. Chem Heterocycl Compd. 2013;49:357. [Google Scholar]; n) Prier CK, Rankic DA, MacMillan DWC. Chem Rev. 2013;113:5322. doi: 10.1021/cr300503r. [DOI] [PMC free article] [PubMed] [Google Scholar]; o) Girard SA, Knauber T, Li C-J. Angew Chem Int Ed. 2014;53:74. doi: 10.1002/anie.201304268. [DOI] [PubMed] [Google Scholar]; p) Haibach MC, Seidel D. Angew Chem Int Ed. 2014;53:5010. doi: 10.1002/anie.201306489. [DOI] [PubMed] [Google Scholar]; q) Wang L, Xiao J. Adv Synth Catal. 2014;356:1137. [Google Scholar]; r) Vo C-VT, Bode JW. J Org Chem. 2014;79:2809. doi: 10.1021/jo5001252. [DOI] [PubMed] [Google Scholar]; s) Seidel D. Org Chem Front. 2014;1:426. doi: 10.1039/C4QO00022F. [DOI] [PMC free article] [PubMed] [Google Scholar]; t) Qin Y, Lv J, Luo S. Tetrahedron Lett. 2014;55:551. [Google Scholar]; u) Beatty JW, Stephenson CRJ. Acc Chem Res. 2015;48:1474. doi: 10.1021/acs.accounts.5b00068. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Selected reviews on other types of redox-neutral transformations:; a) Burns NZ, Baran PS, Hoffmann RW. Angew Chem Int Ed. 2009;48:2854. doi: 10.1002/anie.200806086. [DOI] [PubMed] [Google Scholar]; b) Mahatthananchai J, Bode JW. Acc Chem Res. 2014;47:696. doi: 10.1021/ar400239v. [DOI] [PubMed] [Google Scholar]; c) Ketcham JM, Shin I, Montgomery TP, Krische MJ. Angew Chem Int Ed. 2014;53:9142. doi: 10.1002/anie.201403873. [DOI] [PMC free article] [PubMed] [Google Scholar]; d) Huang H, Ji X, Wu W, Jiang H. Chem Soc Rev. 2015;44:1155. doi: 10.1039/c4cs00288a. [DOI] [PubMed] [Google Scholar]
- 8.a) Seidel D. Acc Chem Res. 2015;48:317. doi: 10.1021/ar5003768. [DOI] [PMC free article] [PubMed] [Google Scholar]; Selected examples from our lab:; b) Zhang C, De CK, Mal R, Seidel D. J Am Chem Soc. 2008;130:416. doi: 10.1021/ja077473r. [DOI] [PubMed] [Google Scholar]; c) Ma L, Chen W, Seidel D. J Am Chem Soc. 2012;134:15305. doi: 10.1021/ja308009g. [DOI] [PubMed] [Google Scholar]; d) Das D, Sun AX, Seidel D. Angew Chem Int Ed. 2013;52:3765. doi: 10.1002/anie.201300021. [DOI] [PMC free article] [PubMed] [Google Scholar]; e) Dieckmann A, Richers MT, Platonova AY, Zhang C, Seidel D, Houk KN. J Org Chem. 2013;78:4132. doi: 10.1021/jo400483h. [DOI] [PMC free article] [PubMed] [Google Scholar]; f) Chen W, Seidel D. Org Lett. 2014;16:3158. doi: 10.1021/ol501365j. [DOI] [PMC free article] [PubMed] [Google Scholar]; g) Richers MT, Breugst M, Platonova AY, Ullrich A, Dieckmann A, Houk KN, Seidel D. J Am Chem Soc. 2014;136:6123. doi: 10.1021/ja501988b. [DOI] [PMC free article] [PubMed] [Google Scholar]; h) Kang Y, Richers MT, Sawicki CH, Seidel D. Chem Commun. 2015;51:10648. doi: 10.1039/c5cc03390j. [DOI] [PMC free article] [PubMed] [Google Scholar]; i) Ma L, Seidel D. Chem Eur J. 2015;21:12908. doi: 10.1002/chem.201501667. [DOI] [PMC free article] [PubMed] [Google Scholar]; j) Kang Y, Chen W, Breugst M, Seidel D. J Org Chem. 2015;80:9628. doi: 10.1021/acs.joc.5b01384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Related studies by others examples:; a) Zheng Q-H, Meng W, Jiang G-J, Yu Z-X. Org Lett. 2013;15:5928. doi: 10.1021/ol402517e. [DOI] [PubMed] [Google Scholar]; b) Lin W, Cao T, Fan W, Han Y, Kuang J, Luo H, Miao B, Tang X, Yu Q, Yuan W, Zhang J, Zhu C, Ma S. Angew Chem Int Ed. 2014;53:277. doi: 10.1002/anie.201308699. [DOI] [PubMed] [Google Scholar]; c) Haldar S, Mahato S, Jana CK. Asian J Org Chem. 2014;3:44. [Google Scholar]; d) Rahman M, Bagdi AK, Mishra S, Hajra A. Chem Commun. 2014;50:2951. doi: 10.1039/c4cc00454j. [DOI] [PubMed] [Google Scholar]; e) Li J, Wang H, Sun J, Yang Y, Liu L. Org Biomol Chem. 2014;12:2523. doi: 10.1039/c3ob42431f. [DOI] [PubMed] [Google Scholar]; f) Lin W, Ma S. Org Chem Front. 2014;1:338. [Google Scholar]; g) Mahato S, Haque MA, Dwari S, Jana CK. RSC Adv. 2014;4:46214. [Google Scholar]; h) Mandal S, Mahato S, Jana CK. Org Lett. 2015;17:3762. doi: 10.1021/acs.orglett.5b01744. [DOI] [PubMed] [Google Scholar]; i) Haldar S, Roy SK, Maity B, Koley D, Jana CK. Chem Eur J. 2015;21:15290. doi: 10.1002/chem.201502297. [DOI] [PubMed] [Google Scholar]; j) Shao G, He Y, Xu Y, Chen J, Yu H, Cao R. Eur J Org Chem. 2015;2015:4615. [Google Scholar]; k) Cheng Y-F, Rong H-J, Yi C-B, Yao J-J, Qu J. Org Lett. 2015;17:4758. doi: 10.1021/acs.orglett.5b02298. [DOI] [PubMed] [Google Scholar]
- 10.Other recent examples of mechanistically distinct redox-neutral amine C–H functionalization:; a) He Y-P, Wu H, Chen D-F, Yu J, Gong L-Z. Chem Eur J. 2013;19:5232. doi: 10.1002/chem.201300052. [DOI] [PubMed] [Google Scholar]; b) Kang YK, Kim DY. Chem Commun. 2014;50:222. doi: 10.1039/c3cc46710d. [DOI] [PubMed] [Google Scholar]; c) Mori K, Kurihara K, Akiyama T. Chem Commun. 2014;50:3729. doi: 10.1039/c4cc00894d. [DOI] [PubMed] [Google Scholar]; d) Mori K, Kurihara K, Yabe S, Yamanaka M, Akiyama T. J Am Chem Soc. 2014;136:3744. doi: 10.1021/ja412706d. [DOI] [PubMed] [Google Scholar]; e) Cao W, Liu X, Guo J, Lin L, Feng X. Chem Eur J. 2015;21:1632. doi: 10.1002/chem.201404327. [DOI] [PubMed] [Google Scholar]; f) Wang P-F, Jiang C-H, Wen X, Xu Q-L, Sun H. J Org Chem. 2015;80:1155. doi: 10.1021/jo5026817. [DOI] [PubMed] [Google Scholar]
- 11.No appreciable amount of product formation was observed with a range of other promoters, including Lewis acids such as LiCl and Cu(2-EH)2.
- 12.Please see the Supporting Information for additional optimization studies.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.