Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Aug 1;89(15):7013–7016. doi: 10.1073/pnas.89.15.7013

Saccharomyces cerevisiae sec59 cells are deficient in dolichol kinase activity.

L Heller 1, P Orlean 1, W L Adair Jr 1
PMCID: PMC49635  PMID: 1323123

Abstract

The temperature-sensitive Saccharomyces cerevisiae mutant sec59 accumulates inactive and incompletely glycosylated protein precursors in its endoplasmic reticulum at the restrictive temperature. O-mannosylation and glycosyl phosphatidylinositol membrane anchoring of protein are also abolished, consistent with a deficiency in dolichyl phosphate mannose. Membranes prepared from sec59 cells that had been shifted to the restrictive temperature, however, made normal amounts of dolichyl phosphate mannose when exogenous dolichyl phosphate was supplied, but dolichyl phosphate mannose synthesis was severely depressed in the absence of exogenous dolichyl phosphate. Quantitative measurements of dolichyl phosphate in sec59 cells showed that the levels were decreased to 48% of wild type at the permissive temperature and to less than 10% at the restrictive temperature. Assays of enzymes from the dolichyl phosphate synthetic pathway, cis-prenyltransferase and dolichyl pyrophosphate phosphatase, gave wild-type levels. However, dolichol kinase activity was greatly decreased. When sec59 cells were transformed with a plasmid that overexpresses the wild-type gene, dolichol kinase activity increased 10-fold over wild-type levels. These results strongly suggest that the sec59 gene encodes dolichol kinase.

Full text

PDF
7013

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adair W. L., Jr, Cafmeyer N. Characterization of dolichyl diphosphate phosphatase from rat liver. Chem Phys Lipids. 1989 Nov;51(3-4):279–284. doi: 10.1016/0009-3084(89)90015-7. [DOI] [PubMed] [Google Scholar]
  2. Adair W. L., Jr, Cafmeyer N. Characterization of the Saccharomyces cerevisiae cis-prenyltransferase required for dolichyl phosphate biosynthesis. Arch Biochem Biophys. 1987 Dec;259(2):589–596. doi: 10.1016/0003-9861(87)90525-x. [DOI] [PubMed] [Google Scholar]
  3. Adair W. L., Jr, Cafmeyer N. Topography of dolichyl phosphate synthesis in rat liver microsomes. Transbilayer arrangement of dolichol kinase and long-chain prenyltransferase. Biochim Biophys Acta. 1983 Mar 22;751(1):21–26. doi: 10.1016/0005-2760(83)90252-7. [DOI] [PubMed] [Google Scholar]
  4. Albright C. F., Orlean P., Robbins P. W. A 13-amino acid peptide in three yeast glycosyltransferases may be involved in dolichol recognition. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7366–7369. doi: 10.1073/pnas.86.19.7366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Allen C. M., Jr, Kalin J. R., Sack J., Verizzo D. CTP-dependent dolichol phosphorylation by mammalian cell homogenates. Biochemistry. 1978 Nov 14;17(23):5020–5026. doi: 10.1021/bi00616a025. [DOI] [PubMed] [Google Scholar]
  6. Bernstein M., Kepes F., Schekman R. Sec59 encodes a membrane protein required for core glycosylation in Saccharomyces cerevisiae. Mol Cell Biol. 1989 Mar;9(3):1191–1199. doi: 10.1128/mcb.9.3.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burton W. A., Lucas J. J., Waechter C. J. Enhanced chick oviduct dolichol kinase activity during estrogen-induced differentiation. J Biol Chem. 1981 Jan 25;256(2):632–635. [PubMed] [Google Scholar]
  8. Chapman A., Fujimoto K., Kornfeld S. The primary glycosylation defect in class E Thy-1-negative mutant mouse lymphoma cells is an inability to synthesize dolichol-P-mannose. J Biol Chem. 1980 May 25;255(10):4441–4446. [PubMed] [Google Scholar]
  9. Conzelmann A., Fankhauser C., Desponds C. Myoinositol gets incorporated into numerous membrane glycoproteins of Saccharomyces cerevisiae; incorporation is dependent on phosphomannomutase (sec53). EMBO J. 1990 Mar;9(3):653–661. doi: 10.1002/j.1460-2075.1990.tb08157.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  11. Ferro-Novick S., Novick P., Field C., Schekman R. Yeast secretory mutants that block the formation of active cell surface enzymes. J Cell Biol. 1984 Jan;98(1):35–43. doi: 10.1083/jcb.98.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harford J. B., Waechter C. J. A developmental change in dolichyl phosphate mannose synthase activity in pig brain. Biochem J. 1980 May 15;188(2):481–490. doi: 10.1042/bj1880481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harford J. B., Waechter C. J., Earl F. L. Effect of exogenous dolichyl monophosphate on a developmental change in mannosylphosphoryldolichol biosynthesis. Biochem Biophys Res Commun. 1977 Jun 20;76(4):1036–1043. doi: 10.1016/0006-291x(77)90960-3. [DOI] [PubMed] [Google Scholar]
  14. Hubbard S. C., Ivatt R. J. Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem. 1981;50:555–583. doi: 10.1146/annurev.bi.50.070181.003011. [DOI] [PubMed] [Google Scholar]
  15. Huffaker T. C., Robbins P. W. Yeast mutants deficient in protein glycosylation. Proc Natl Acad Sci U S A. 1983 Dec;80(24):7466–7470. doi: 10.1073/pnas.80.24.7466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hunt L. A. CHO cells selected for phytohemagglutinin and con A resistance are defective in both early and late stages of protein glycosylation. Cell. 1980 Sep;21(2):407–415. doi: 10.1016/0092-8674(80)90477-8. [DOI] [PubMed] [Google Scholar]
  17. Keller R. K., Rottler G. D., Cafmeyer N., Adair W. L., Jr Subcellular localization and substrate specificity of dolichol kinase from rat liver. Biochim Biophys Acta. 1982 Oct 28;719(1):118–125. doi: 10.1016/0304-4165(82)90315-4. [DOI] [PubMed] [Google Scholar]
  18. Kepes F., Schekman R. The yeast SEC53 gene encodes phosphomannomutase. J Biol Chem. 1988 Jul 5;263(19):9155–9161. [PubMed] [Google Scholar]
  19. Kornfeld S., Gregory W., Chapman A. Class E Thy-1 negative mouse lymphoma cells utilize an alternate pathway of oligosaccharide processing to synthesize complex-type oligosaccharides. J Biol Chem. 1979 Nov 25;254(22):11649–11654. [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Lehrman M. A., Zeng Y. Pleiotropic resistance to glycoprotein processing inhibitors in Chinese hamster ovary cells. The role of a novel mutation in the asparagine-linked glycosylation pathway. J Biol Chem. 1989 Jan 25;264(3):1584–1593. [PubMed] [Google Scholar]
  22. Lucas J. J., Nevar C. Loss of mannosyl phosphoryl polyisoprenol synthesis upon conversion of reticulocytes to erythrocytes. Biochim Biophys Acta. 1978 Mar 30;528(3):475–482. doi: 10.1016/0005-2760(78)90037-1. [DOI] [PubMed] [Google Scholar]
  23. Novick P., Field C., Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell. 1980 Aug;21(1):205–215. doi: 10.1016/0092-8674(80)90128-2. [DOI] [PubMed] [Google Scholar]
  24. Orlean P., Albright C., Robbins P. W. Cloning and sequencing of the yeast gene for dolichol phosphate mannose synthase, an essential protein. J Biol Chem. 1988 Nov 25;263(33):17499–17507. [PubMed] [Google Scholar]
  25. Orlean P. Dolichol phosphate mannose synthase is required in vivo for glycosyl phosphatidylinositol membrane anchoring, O mannosylation, and N glycosylation of protein in Saccharomyces cerevisiae. Mol Cell Biol. 1990 Nov;10(11):5796–5805. doi: 10.1128/mcb.10.11.5796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rossignol D. P., Lennarz W. J., Waechter C. J. Induction of phosphorylation of dolichol during embryonic development of the sea urchin. J Biol Chem. 1981 Oct 25;256(20):10538–10542. [PubMed] [Google Scholar]
  27. Rossignol D. P., Scher M., Waechter C. J., Lennarz W. J. Metabolic interconversion of dolichol and dolichyl phosphate during development of the sea urchin embryo. J Biol Chem. 1983 Aug 10;258(15):9122–9127. [PubMed] [Google Scholar]
  28. Runge K. W., Huffaker T. C., Robbins P. W. Two yeast mutations in glucosylation steps of the asparagine glycosylation pathway. J Biol Chem. 1984 Jan 10;259(1):412–417. [PubMed] [Google Scholar]
  29. Spiro M. J., Spiro R. G., Bhoyroo V. D. Glycosylation of proteins by oligosaccharide-lipids. Studies on a thyroid enzyme involved in oligosaccharide transfer and the role of glucose in this reaction. J Biol Chem. 1979 Aug 25;254(16):7668–7674. [PubMed] [Google Scholar]
  30. Stoll J., Krag S. S. A mutant of Chinese hamster ovary cells with a reduction in levels of dolichyl phosphate available for glycosylation. J Biol Chem. 1988 Aug 5;263(22):10766–10773. [PubMed] [Google Scholar]
  31. Stoll J., Robbins A. R., Krag S. S. Mutant of Chinese hamster ovary cells with altered mannose 6-phosphate receptor activity is unable to synthesize mannosylphosphoryldolichol. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2296–2300. doi: 10.1073/pnas.79.7.2296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stoll J., Rosenwald A. G., Krag S. S. A Chinese hamster ovary cell mutant F2A8 utilizes polyprenol rather than dolichol for its lipid-dependent asparagine-linked glycosylation reactions. J Biol Chem. 1988 Aug 5;263(22):10774–10782. [PubMed] [Google Scholar]
  33. Sumbilla C., Waechter C. J. Dolichol kinase, phosphatase, and esterase activity in calf brain. Methods Enzymol. 1985;111:471–482. doi: 10.1016/s0076-6879(85)11032-3. [DOI] [PubMed] [Google Scholar]
  34. Szkopińska A., Nowak L., Swiezewska E., Palamarczyk G. CTP-dependent lipid kinases of yeast. Arch Biochem Biophys. 1988 Oct;266(1):124–131. doi: 10.1016/0003-9861(88)90242-1. [DOI] [PubMed] [Google Scholar]
  35. Tanner W., Haselbeck A., Schwaiger H., Lehle L. Synthesis and possible role of carbohydrate moieties of yeast glycoproteins. Philos Trans R Soc Lond B Biol Sci. 1982 Dec 24;300(1099):185–194. doi: 10.1098/rstb.1982.0165. [DOI] [PubMed] [Google Scholar]
  36. Trimble R. B., Byrd J. C., Maley F. Effect of glucosylation of lipid intermediates on oligosaccharide transfer in solubilized microsomes from Saccharomyces cerevisiae. J Biol Chem. 1980 Dec 25;255(24):11892–11895. [PubMed] [Google Scholar]
  37. Trimble R. B., Maley F., Tarentino A. L. Characterization of large oligosaccharide-lipids synthesized in vitro by microsomes from Saccharomyces cerevisiae. J Biol Chem. 1980 Nov 10;255(21):10232–10238. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES