Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Aug 1;89(15):7208–7212. doi: 10.1073/pnas.89.15.7208

Antibodies to a peptide from the maize auxin-binding protein have auxin agonist activity.

M A Venis 1, R M Napier 1, H Barbier-Brygoo 1, C Maurel 1, C Perrot-Rechenmann 1, J Guern 1
PMCID: PMC49675  PMID: 1323130

Abstract

The major auxin-binding protein in maize membranes is thought to function as a physiological receptor. From earlier information, including the use of site-directed irreversible inhibitors, several of the amino acids likely to form part of the active auxin-binding site were provisionally assigned. Inspection of the amino acid sequence of the auxin-binding protein showed a short region containing all but one of these amino acids. We find that antisera raised against a synthetic peptide encompassing this region recognize all isoforms of the maize auxin-binding protein together with homologous polypeptides in other species. We further find that the antibodies hyperpolarize protoplast transmembrane potential in an auxin-like manner. We conclude that these antibodies display auxin agonist activity and that we have identified an essential portion of the auxin-binding site.

Full text

PDF
7210

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbier-Brygoo H., Ephritikhine G., Klämbt D., Ghislain M., Guern J. Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts. Proc Natl Acad Sci U S A. 1989 Feb;86(3):891–895. doi: 10.1073/pnas.86.3.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ephritikhine G., Barbier-Brygoo H., Muller J. F., Guern J. Auxin effect on the transmembrane potential difference of wild-type and mutant tobacco protoplasts exhibiting a differential sensitiity to auxin. Plant Physiol. 1987 Apr;83(4):801–804. doi: 10.1104/pp.83.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Felle H., Peters W., Palme K. The electrical response of maize to auxins. Biochim Biophys Acta. 1991 May 7;1064(2):199–204. doi: 10.1016/0005-2736(91)90302-o. [DOI] [PubMed] [Google Scholar]
  4. Hesse T., Feldwisch J., Balshüsemann D., Bauw G., Puype M., Vandekerckhove J., Löbler M., Klämbt D., Schell J., Palme K. Molecular cloning and structural analysis of a gene from Zea mays (L.) coding for a putative receptor for the plant hormone auxin. EMBO J. 1989 Sep;8(9):2453–2461. doi: 10.1002/j.1460-2075.1989.tb08380.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hollenberg M. D. Mechanisms of receptor-mediated transmembrane signalling. Experientia. 1986 Jul 15;42(7):718–727. doi: 10.1007/BF01941517. [DOI] [PubMed] [Google Scholar]
  6. Inohara N., Shimomura S., Fukui T., Futai M. Auxin-binding protein located in the endoplasmic reticulum of maize shoots: molecular cloning and complete primary structure. Proc Natl Acad Sci U S A. 1989 May;86(10):3564–3568. doi: 10.1073/pnas.86.10.3564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ketchum K. A., Poole R. J. Cytosolic calcium regulates a potassium current in corn (Zea mays) protoplasts. J Membr Biol. 1991 Feb;119(3):277–288. doi: 10.1007/BF01868732. [DOI] [PubMed] [Google Scholar]
  8. Löbler M., Klämbt D. Auxin-binding protein from coleoptile membranes of corn (Zea mays L.). I. Purification by immunological methods and characterization. J Biol Chem. 1985 Aug 15;260(17):9848–9853. [PubMed] [Google Scholar]
  9. Löbler M., Klämbt D. Auxin-binding protein from coleoptile membranes of corn (Zea mays L.). II. Localization of a putative auxin receptor. J Biol Chem. 1985 Aug 15;260(17):9854–9859. [PubMed] [Google Scholar]
  10. Maddy A. H., Dunn M. J., Kelly P. G. The characterisation of membrane proteins by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods. Biochim Biophys Acta. 1972 Nov 2;288(2):263–276. doi: 10.1016/0005-2736(72)90247-7. [DOI] [PubMed] [Google Scholar]
  11. Maurel C., Barbier-Brygoo H., Spena A., Tempé J., Guern J. Single rol Genes from the Agrobacterium rhizogenes T(L)-DNA Alter Some of the Cellular Responses to Auxin in Nicotiana tabacum. Plant Physiol. 1991 Sep;97(1):212–216. doi: 10.1104/pp.97.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Navé J. F., Benveniste P. Inactivation by phenylglyoxal of the specific binding of 1-naphthyl acetic Acid with membrane-bound auxin binding sites from maize coleoptiles. Plant Physiol. 1984 Apr;74(4):1035–1040. doi: 10.1104/pp.74.4.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Palme K., Hesse T., Campos N., Garbers C., Yanofsky M. F., Schell J. Molecular analysis of an auxin binding protein gene located on chromosome 4 of Arabidopsis. Plant Cell. 1992 Feb;4(2):193–201. doi: 10.1105/tpc.4.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Senn A. P., Goldsmith M. H. Regulation of electrogenic proton pumping by auxin and fusicoccin as related to the growth of Avena coleoptiles. Plant Physiol. 1988 Sep;88(1):131–138. doi: 10.1104/pp.88.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shen W. H., Davioud E., David C., Barbier-Brygoo H., Tempé J., Guern J. High Sensitivity to Auxin is a Common Feature of Hairy Root. Plant Physiol. 1990 Oct;94(2):554–560. doi: 10.1104/pp.94.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shen W. H., Petit A., Guern J., Tempé J. Hairy roots are more sensitive to auxin than normal roots. Proc Natl Acad Sci U S A. 1988 May;85(10):3417–3421. doi: 10.1073/pnas.85.10.3417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shimomura S., Sotobayashi T., Futai M., Fukui T. Purification and properties of an auxin-binding protein from maize shoot membranes. J Biochem. 1986 May;99(5):1513–1524. doi: 10.1093/oxfordjournals.jbchem.a135621. [DOI] [PubMed] [Google Scholar]
  18. Strosberg A. D. Interaction of anti-idiotypic antibodies with membrane receptors: practical considerations. Methods Enzymol. 1989;178:179–191. doi: 10.1016/0076-6879(89)78015-0. [DOI] [PubMed] [Google Scholar]
  19. Thompson M., Krull U. J., Venis M. A. A chemoreceptive bilayer lipid membrane based on an auxin-receptor ATPase electrogenic pump. Biochem Biophys Res Commun. 1983 Jan 14;110(1):300–304. doi: 10.1016/0006-291x(83)91295-0. [DOI] [PubMed] [Google Scholar]
  20. Tillmann U., Viola G., Kayser B., Siemeister G., Hesse T., Palme K., Löbler M., Klämbt D. cDNA clones of the auxin-binding protein from corn coleoptiles (Zea mays L.): isolation and characterization by immunological methods. EMBO J. 1989 Sep;8(9):2463–2467. doi: 10.1002/j.1460-2075.1989.tb08381.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES