Skip to main content
Journal of Clinical Pathology logoLink to Journal of Clinical Pathology
. 1983 Jan;36(1):1–8. doi: 10.1136/jcp.36.1.1

Cerebrospinal fluid concentrations of hypoxanthine, xanthine, uridine and inosine: high concentrations of the ATP metabolite, hypoxanthine, after hypoxia.

R A Harkness, R J Lund
PMCID: PMC498094  PMID: 6681617

Abstract

CSF obtained for clinical purposes from newborn, children and adults has been analysed by high pressure liquid chromatography for hypoxanthine, xanthine, inosine, uridine and urate. Large rises in hypoxanthine and to a lesser extent xanthine occur for about 24 h after hypoxia. High concentrations were associated with later evidence of brain damage or subsequent death. Changes in CSF could be independent of those in plasma. Small or negligible rises were associated with localised and generalised infections including bacterial meningitis, fits, or both. Marked and rapid rises were found after death. These estimations may "predict" the extent of brain damage or brain death.

Full text

PDF
5

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Addy D. P. Birth asphyxia. Br Med J (Clin Res Ed) 1982 May 1;284(6325):1288–1289. doi: 10.1136/bmj.284.6325.1288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Controni G., Rodriguez W. J., Hicks J. M., Ficke M., Ross S., Friedman G., Khan W. Cerebrospinal fluid lactic acid levels in meningitis. J Pediatr. 1977 Sep;91(3):379–384. doi: 10.1016/s0022-3476(77)81304-8. [DOI] [PubMed] [Google Scholar]
  3. Cornford E. M., Oldendorf W. H. Independent blood-brain barrier transport systems for nucleic acid precursors. Biochim Biophys Acta. 1975 Jun 25;394(2):211–219. doi: 10.1016/0005-2736(75)90259-x. [DOI] [PubMed] [Google Scholar]
  4. Ekstedt J. CSF hydrodynamic studies in man. 2 . Normal hydrodynamic variables related to CSF pressure and flow. J Neurol Neurosurg Psychiatry. 1978 Apr;41(4):345–353. doi: 10.1136/jnnp.41.4.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Firkin F. C., Linnane A. W. Biogenesis of mitochondria. 8. The effect of chloramphenicol on regenerating rat liver. Exp Cell Res. 1969 Apr;55(1):68–76. doi: 10.1016/0014-4827(69)90457-1. [DOI] [PubMed] [Google Scholar]
  6. Harkness R. A., Whitelaw A. G., Simmonds R. J. Intrapartum hypoxia: the association between neurological assessment of damage and abnormal excretion of ATP metabolites. J Clin Pathol. 1982 Sep;35(9):999–1007. doi: 10.1136/jcp.35.9.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hill L. M. Diagnosis and management of fetal distress. Mayo Clin Proc. 1979 Dec;54(12):784–793. [PubMed] [Google Scholar]
  8. Illingworth R. S. Why blame the obstetrician? A review. Br Med J. 1979 Mar 24;1(6166):797–801. doi: 10.1136/bmj.1.6166.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mann L. I., Carmichael A., Duchin S. Fetal cerebrospinal fluid acid-base regulation. Am J Obstet Gynecol. 1972 Oct 15;114(4):546–552. doi: 10.1016/0002-9378(72)90218-9. [DOI] [PubMed] [Google Scholar]
  10. Mansell M. A., Allsop J., North M. E., Simmonds R. J., Harkness R. A., Watts R. W. Effect of renal failure on erythrocyte purine nucleotide, nucleoside and base concentrations and some related enzyme activities. Clin Sci (Lond) 1981 Dec;61(6):757–764. doi: 10.1042/cs0610757. [DOI] [PubMed] [Google Scholar]
  11. Mason J. K., Harkness R. A., Elton R. A., Bartholomew S. Cot deaths in Edinburgh: infant feeding and socioeconomic factors. J Epidemiol Community Health. 1980 Mar;34(1):35–41. doi: 10.1136/jech.34.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mathew O. P., Bland H., Boxerman S. B., James E. CSF lactate levels in high risk neonates with and without asphyxia. Pediatrics. 1980 Aug;66(2):224–227. [PubMed] [Google Scholar]
  13. Meberg A., Saugstad O. D. Hypoxanthine in cerebrospinal fluid in children. Scand J Clin Lab Invest. 1978 Sep;38(5):437–440. doi: 10.1080/00365517809108448. [DOI] [PubMed] [Google Scholar]
  14. Milhorat T. H. Structure and function of the choroid plexus and other sites of cerebrospinal fluid formation. Int Rev Cytol. 1976;47:225–288. doi: 10.1016/s0074-7696(08)60090-x. [DOI] [PubMed] [Google Scholar]
  15. Myllylä V. V., Heikkinen E. R., Vapaatalo H., Hokkanen E. Cyclic amp concentration and enzyme activities of cerebrospinal fluid in patients with epilepsy or central nervous system damage. Eur Neurol. 1975;13(2):123–130. doi: 10.1159/000114668. [DOI] [PubMed] [Google Scholar]
  16. Nordström C. H., Rehncrona S., Siesjö B. K., Westerberg E. Adenosine in rat cerebral cortex: its determination, normal values, and correlation to AMP and cyclic AMP during shortlasting ischemia. Acta Physiol Scand. 1977 Sep;101(1):63–71. doi: 10.1111/j.1748-1716.1977.tb05984.x. [DOI] [PubMed] [Google Scholar]
  17. O'Connor M. C., Harkness R. A., Simmonds R. J., Hytten F. E. The measurement of hypoxanthine, xanthine, inosine and uridine in umbilical cord blood and fetal scalp blood samples as a measure of fetal hypoxia. Br J Obstet Gynaecol. 1981 Apr;88(4):381–390. doi: 10.1111/j.1471-0528.1981.tb01001.x. [DOI] [PubMed] [Google Scholar]
  18. Pfadenhauer E. H., Tong S. D. Determination of inosine and adenosine in human plasma using high-performance liquid chromatography and a boronate affinity gel. J Chromatogr. 1979 Apr 11;162(4):585–590. doi: 10.1016/s0378-4347(00)81838-1. [DOI] [PubMed] [Google Scholar]
  19. Radda G. K., Gadian D. G., Ross B. D. Energy metabolism and cellular pH in normal and pathological conditions. A new look through 31phosphorus nuclear magnetic resonance. Ciba Found Symp. 1982;87:36–57. doi: 10.1002/9780470720691.ch3. [DOI] [PubMed] [Google Scholar]
  20. Simmonds R. J., Coade S. B., Harkness R. A., Drury L., Hytten F. E. Nucleotide, nucleoside and purine base concentrations in human placentae. Placenta. 1982 Jan-Mar;3(1):29–38. doi: 10.1016/s0143-4004(82)80015-5. [DOI] [PubMed] [Google Scholar]
  21. Simmonds R. J., Harkness R. A. High-performance liquid chromatographic methods for base and nucleoside analysis in extracellular fluids and in cells. J Chromatogr. 1981 Dec 11;226(2):369–381. doi: 10.1016/s0378-4347(00)86071-5. [DOI] [PubMed] [Google Scholar]
  22. Simpson H., Habel A. H., George E. L. Cerebrospinal fluid acid-base status and lactate and pyruvate concentrations after convulsions of varied duration and aetiology in children. Arch Dis Child. 1977 Nov;52(11):844–849. doi: 10.1136/adc.52.11.844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Welch K. M., Meyer J. S., Chee A. N. Evidence for disordered cyclic amp metabolism in patients with cerebral infarction. Eur Neurol. 1975;13(2):144–154. doi: 10.1159/000114670. [DOI] [PubMed] [Google Scholar]
  24. Wenzel D., Felgenhauer K. The development of the blood-CSF barrier after birth. Neuropadiatrie. 1976 May;7(2):175–181. doi: 10.1055/s-0028-1091621. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES