Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Sep 1;89(17):8160–8164. doi: 10.1073/pnas.89.17.8160

Reversible structural alterations of undifferentiated and differentiated human neuroblastoma cells induced by phorbol ester.

I S Tint 1, E M Bonder 1, H H Feder 1, C P Reboulleau 1, J M Vasiliev 1, I M Gelfand 1
PMCID: PMC49876  PMID: 1518842

Abstract

Morphological alterations in the structure of undifferentiated and morphologically differentiated human neuroblastoma cells induced by phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, were examined by video microscopy and immunomorphology. In undifferentiated cells, PMA induced the formation of motile actin-rich lamellas and of stable cylindrical processes rich in microtubules. Formation of stable processes resulted either from the collapse of lamellas or the movement of the cell body away from the base of a process. In differentiated cells, PMA induced the rapid extension of small lamellas and subsequent formation of short-lived elongated processes from the lateral edges of neurites. Additionally, growth cones exhibited enhanced modulation in shape after PMA treatment. These reversible reorganizations were similar to the actinoplast-tubuloplast transformations exhibited by PMA-treated fibroblasts. We suggest that actinoplast-tubuloplast reorganizations play essential roles in morphogenesis where stable cytoplasmic extensions are induced by external stimuli. In particular, PMA-induced reorganizations of neural cells in culture may be a model for morphological modulations that occur in nerve tissue.

Full text

PDF
8160

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama T., Nishida E., Ishida J., Saji N., Ogawara H., Hoshi M., Miyata Y., Sakai H. Purified protein kinase C phosphorylates microtubule-associated protein 2. J Biol Chem. 1986 Nov 25;261(33):15648–15651. [PubMed] [Google Scholar]
  2. Alkon D. L., Amaral D. G., Bear M. F., Black J., Carew T. J., Cohen N. J., Disterhoft J. F., Eichenbaum H., Golski S., Gorman L. K. Learning and memory. FESN Study Group. Brain Res Brain Res Rev. 1991 May-Aug;16(2):193–220. doi: 10.1016/0165-0173(91)90005-s. [DOI] [PubMed] [Google Scholar]
  3. Bershadsky A. D., Ivanova O. Y., Lyass L. A., Pletyushkina O. Y., Vasiliev J. M., Gelfand I. M. Cytoskeletal reorganizations responsible for the phorbol ester-induced formation of cytoplasmic processes: possible involvement of intermediate filaments. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1884–1888. doi: 10.1073/pnas.87.5.1884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bershadsky A. D., Tint I. S., Svitkina T. M. Association of intermediate filaments with vinculin-containing adhesion plaques of fibroblasts. Cell Motil Cytoskeleton. 1987;8(3):274–283. doi: 10.1002/cm.970080308. [DOI] [PubMed] [Google Scholar]
  5. Bershadsky A. D., Vaisberg E. A., Vasiliev J. M. Pseudopodial activity at the active edge of migrating fibroblast is decreased after drug-induced microtubule depolymerization. Cell Motil Cytoskeleton. 1991;19(3):152–158. doi: 10.1002/cm.970190303. [DOI] [PubMed] [Google Scholar]
  6. Braha O., Dale N., Hochner B., Klein M., Abrams T. W., Kandel E. R. Second messengers involved in the two processes of presynaptic facilitation that contribute to sensitization and dishabituation in Aplysia sensory neurons. Proc Natl Acad Sci U S A. 1990 Mar;87(5):2040–2044. doi: 10.1073/pnas.87.5.2040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cambray-Deakin M. A., Adu J., Burgoyne R. D. Neuritogenesis in cerebellar granule cells in vitro: a role for protein kinase C. Brain Res Dev Brain Res. 1990 Apr 1;53(1):40–46. doi: 10.1016/0165-3806(90)90122-f. [DOI] [PubMed] [Google Scholar]
  8. Danowski B. A., Harris A. K. Changes in fibroblast contractility, morphology, and adhesion in response to a phorbol ester tumor promoter. Exp Cell Res. 1988 Jul;177(1):47–59. doi: 10.1016/0014-4827(88)90024-9. [DOI] [PubMed] [Google Scholar]
  9. Dugina V. B., Svitkina T. M., Vasiliev J. M., Gelfand I. M. Special type of morphological reorganization induced by phorbol ester: reversible partition of cell into motile and stable domains. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4122–4125. doi: 10.1073/pnas.84.12.4122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Glowacka D., Wagner J. A. Role of the cAMP-dependent protein kinase and protein kinase C in regulating the morphological differentiation of PC12 cells. J Neurosci Res. 1990 Apr;25(4):453–462. doi: 10.1002/jnr.490250403. [DOI] [PubMed] [Google Scholar]
  11. Hartwig J. H., Janmey P. A. Stimulation of a calcium-dependent actin nucleation activity by phorbol 12-myristate 13-acetate in rabbit macrophage cytoskeletons. Biochim Biophys Acta. 1989 Jan 17;1010(1):64–71. doi: 10.1016/0167-4889(89)90185-7. [DOI] [PubMed] [Google Scholar]
  12. Hartwig J. H., Thelen M., Rosen A., Janmey P. A., Nairn A. C., Aderem A. MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature. 1992 Apr 16;356(6370):618–622. doi: 10.1038/356618a0. [DOI] [PubMed] [Google Scholar]
  13. Herman M. A., Schulz C. A., Claude P. Early and late effects of NGF may be mediated by different pathways in transdifferentiating chromaffin cells. Brain Res. 1992 Mar 20;575(2):257–264. doi: 10.1016/0006-8993(92)90088-q. [DOI] [PubMed] [Google Scholar]
  14. Huang C. K., Devanney J. F., Kennedy S. P. Vimentin, a cytoskeletal substrate of protein kinase C. Biochem Biophys Res Commun. 1988 Feb 15;150(3):1006–1011. doi: 10.1016/0006-291x(88)90728-0. [DOI] [PubMed] [Google Scholar]
  15. Lederhendler I. I., Etcheberrigaray R., Yamoah E. N., Matzel L. D., Alkon D. L. Outgrowths from Hermissenda photoreceptor somata are associated with activation of protein kinase C. Brain Res. 1990 Nov 26;534(1-2):195–200. doi: 10.1016/0006-8993(90)90129-y. [DOI] [PubMed] [Google Scholar]
  16. Lyass L. A., Bershadsky A. D., Vasiliev J. M., Gelfand I. M. Microtubule-dependent effect of phorbol ester on the contractility of cytoskeleton of cultured fibroblasts. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9538–9541. doi: 10.1073/pnas.85.24.9538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nishikawa M., Sellers J. R., Adelstein R. S., Hidaka H. Protein kinase C modulates in vitro phosphorylation of the smooth muscle heavy meromyosin by myosin light chain kinase. J Biol Chem. 1984 Jul 25;259(14):8808–8814. [PubMed] [Google Scholar]
  18. Otte A. P., Moon R. T. Protein kinase C isozymes have distinct roles in neural induction and competence in Xenopus. Cell. 1992 Mar 20;68(6):1021–1029. doi: 10.1016/0092-8674(92)90074-m. [DOI] [PubMed] [Google Scholar]
  19. Rocchi P., Ferreri A. M., Simone G., Bagnara G. P., Paolucci G. Neuronal cell differentiation of human neuroblastoma cells by inducing agents in combination. Anticancer Res. 1991 Sep-Oct;11(5):1885–1889. [PubMed] [Google Scholar]
  20. Shariff A., Luna E. J. Diacylglycerol-stimulated formation of actin nucleation sites at plasma membranes. Science. 1992 Apr 10;256(5054):245–247. doi: 10.1126/science.1373523. [DOI] [PubMed] [Google Scholar]
  21. Sheterline P., Rickard J. E., Boothroyd B., Richards R. C. Phorbol ester induces rapid actin assembly in neutrophil leucocytes independently of changes in [Ca2+]i and pHi. J Muscle Res Cell Motil. 1986 Oct;7(5):405–412. doi: 10.1007/BF01753583. [DOI] [PubMed] [Google Scholar]
  22. Smalheiser N. R. Neuronal growth cones: an extended view. Neuroscience. 1990;38(1):1–11. doi: 10.1016/0306-4522(90)90369-f. [DOI] [PubMed] [Google Scholar]
  23. Tint I. S., Bershadsky A. D., Gelfand I. M., Vasiliev J. M. Post-translational modification of microtubules is a component of synergic alterations of cytoskeleton leading to formation of cytoplasmic processes in fibroblasts. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6318–6322. doi: 10.1073/pnas.88.14.6318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vara F., Schneider J. A., Rozengurt E. Ionic responses rapidly elicited by activation of protein kinase C in quiescent Swiss 3T3 cells. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2384–2388. doi: 10.1073/pnas.82.8.2384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vasiliev J. M. Actin cortex and microtubular system in morphogenesis: cooperation and competition. J Cell Sci Suppl. 1987;8:1–18. doi: 10.1242/jcs.1987.supplement_8.1. [DOI] [PubMed] [Google Scholar]
  26. Vasiliev J. M. Polarization of pseudopodial activities: cytoskeletal mechanisms. J Cell Sci. 1991 Jan;98(Pt 1):1–4. doi: 10.1242/jcs.98.1.1. [DOI] [PubMed] [Google Scholar]
  27. Weeks B. S., DiSalvo J., Kleinman H. K. Laminin-mediated process formation in neuronal cells involves protein dephosphorylation. J Neurosci Res. 1990 Nov;27(3):418–426. doi: 10.1002/jnr.490270321. [DOI] [PubMed] [Google Scholar]
  28. Weiler R., Kohler K., Janssen U. Protein kinase C mediates transient spinule-type neurite outgrowth in the retina during light adaptation. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3603–3607. doi: 10.1073/pnas.88.9.3603. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES