Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Oct 1;89(19):9112–9116. doi: 10.1073/pnas.89.19.9112

Protein oxidation associated with aging is reduced by dietary restriction of protein or calories.

L D Youngman 1, J Y Park 1, B N Ames 1
PMCID: PMC50075  PMID: 1409611

Abstract

The accumulation of unrepaired oxidative damage products may be a major factor in cellular aging. Both oxidative lesions in DNA and oxidatively damaged proteins have been shown to accumulate during aging. The accumulation of oxidized proteins in Fischer 344 rats was compared for animals consuming protein-restricted and calorically restricted diets--both of which have been shown to extend lifespan. Rats were fed diets restricted in either protein (5% or 10% of the diet as compared with the normal 20% casein), or calories (25% or 40% less than normal), or total diet (40% less than normal). In addition, some of the rats fed a diet providing 5% or 20% protein were irradiated twice weekly (125 rads per exposure; 1 rad = 0.01 Gy). The level of oxidative damage to proteins (protein carbonyls) was determined in rats sacrificed at various times. The oxidative damage to proteins increased with aging and with radiation. Either protein or calorie restriction markedly inhibited the accumulation of oxidatively damaged proteins. Protein restriction reduced the accumulation of oxidatively damaged proteins during the oxidative stress of chronic irradiation.

Full text

PDF
9112

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman R., Saul R. L., Ames B. N. Oxidative damage to DNA: relation to species metabolic rate and life span. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2706–2708. doi: 10.1073/pnas.85.8.2706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ames B. N. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science. 1983 Sep 23;221(4617):1256–1264. doi: 10.1126/science.6351251. [DOI] [PubMed] [Google Scholar]
  3. Ames B. N. Endogenous oxidative DNA damage, aging, and cancer. Free Radic Res Commun. 1989;7(3-6):121–128. doi: 10.3109/10715768909087933. [DOI] [PubMed] [Google Scholar]
  4. Ames B. N., Gold L. S. Chemical carcinogenesis: too many rodent carcinogens. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7772–7776. doi: 10.1073/pnas.87.19.7772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carney J. M., Starke-Reed P. E., Oliver C. N., Landum R. W., Cheng M. S., Wu J. F., Floyd R. A. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3633–3636. doi: 10.1073/pnas.88.9.3633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chung M. H., Kasai H., Nishimura S., Yu B. P. Protection of DNA damage by dietary restriction. Free Radic Biol Med. 1992;12(6):523–525. doi: 10.1016/0891-5849(92)90105-p. [DOI] [PubMed] [Google Scholar]
  7. Cox M. D., Dalal S. S., Heard C. R., Millward D. J. Metabolic rate and thyroid status in rats fed diets of different protein-energy value: the importance of free T3. J Nutr. 1984 Sep;114(9):1609–1616. doi: 10.1093/jn/114.9.1609. [DOI] [PubMed] [Google Scholar]
  8. Davis T. A., Bales C. W., Beauchene R. E. Differential effects of dietary caloric and protein restriction in the aging rat. Exp Gerontol. 1983;18(6):427–435. doi: 10.1016/0531-5565(83)90021-9. [DOI] [PubMed] [Google Scholar]
  9. De A. K., Chipalkatti S., Aiyar A. S. Some biochemical parameters of ageing in relation to dietary protein. Mech Ageing Dev. 1983 Jan;21(1):37–48. doi: 10.1016/0047-6374(83)90014-3. [DOI] [PubMed] [Google Scholar]
  10. Duffy P. H., Feuers R. J., Leakey J. A., Nakamura K., Turturro A., Hart R. W. Effect of chronic caloric restriction on physiological variables related to energy metabolism in the male Fischer 344 rat. Mech Ageing Dev. 1989 May;48(2):117–133. doi: 10.1016/0047-6374(89)90044-4. [DOI] [PubMed] [Google Scholar]
  11. Fernandes G., Yunis E. J., Good R. A. Influence of diet on survival of mice. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1279–1283. doi: 10.1073/pnas.73.4.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fraga C. G., Shigenaga M. K., Park J. W., Degan P., Ames B. N. Oxidative damage to DNA during aging: 8-hydroxy-2'-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4533–4537. doi: 10.1073/pnas.87.12.4533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fucci L., Oliver C. N., Coon M. J., Stadtman E. R. Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implication in protein turnover and ageing. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1521–1525. doi: 10.1073/pnas.80.6.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goodrick C. L. Body weight increment and length of life: the effect of genetic constitution and dietary protein. J Gerontol. 1978 Mar;33(2):184–190. doi: 10.1093/geronj/33.2.184. [DOI] [PubMed] [Google Scholar]
  15. Gordillo E., Ayala A., F-Lobato M., Bautista J., Machado A. Possible involvement of histidine residues in the loss of enzymatic activity of rat liver malic enzyme during aging. J Biol Chem. 1988 Jun 15;263(17):8053–8057. [PubMed] [Google Scholar]
  16. Hansen-Smith F. M., Maksud M. G., Van Horn D. L. Effect of dietary protein restriction or food restriction on oxygen consumption and mitochondrial distribution in cardiac and red and white skeletal muscle of rats. J Nutr. 1977 Apr;107(4):525–533. doi: 10.1093/jn/107.4.525. [DOI] [PubMed] [Google Scholar]
  17. Harman D. The aging process. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7124–7128. doi: 10.1073/pnas.78.11.7124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Harman D. The aging process: major risk factor for disease and death. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5360–5363. doi: 10.1073/pnas.88.12.5360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hegner D. Age-dependence of molecular and functional changes in biological membrane properties. Mech Ageing Dev. 1980 Sep-Oct;14(1-2):101–118. doi: 10.1016/0047-6374(80)90109-8. [DOI] [PubMed] [Google Scholar]
  20. Horio F., Youngman L. D., Bell R. C., Campbell T. C. Thermogenesis, low-protein diets, and decreased development of AFB1-induced preneoplastic foci in rat liver. Nutr Cancer. 1991;16(1):31–41. doi: 10.1080/01635589109514138. [DOI] [PubMed] [Google Scholar]
  21. Horáková M., Deyl Z., Hausmann J., Macek K. The effect of low protein-high dextrin diet and subsequent food restriction upon life prolongation in Fischer 344 male rats. Mech Ageing Dev. 1988 Oct;45(1):1–7. doi: 10.1016/0047-6374(88)90014-0. [DOI] [PubMed] [Google Scholar]
  22. Koizumi A., Weindruch R., Walford R. L. Influences of dietary restriction and age on liver enzyme activities and lipid peroxidation in mice. J Nutr. 1987 Feb;117(2):361–367. doi: 10.1093/jn/117.2.361. [DOI] [PubMed] [Google Scholar]
  23. Kubo C., Johnson B. C., Day N. K., Good R. A. Calorie source, calorie restriction, immunity and aging of (NZB/NZW)F1 mice. J Nutr. 1984 Oct;114(10):1884–1899. doi: 10.1093/jn/114.10.1884. [DOI] [PubMed] [Google Scholar]
  24. Kumar S. P., Roy S. J., Tokumo K., Reddy B. S. Effect of different levels of calorie restriction on azoxymethane-induced colon carcinogenesis in male F344 rats. Cancer Res. 1990 Sep 15;50(18):5761–5766. [PubMed] [Google Scholar]
  25. Laganiere S., Yu B. P. Anti-lipoperoxidation action of food restriction. Biochem Biophys Res Commun. 1987 Jun 30;145(3):1185–1191. doi: 10.1016/0006-291x(87)91562-2. [DOI] [PubMed] [Google Scholar]
  26. Lammi-Keefe C. J., Swan P. B., Hegarty P. V. Effect of level of dietary protein and total or partial starvation on catalase and superoxide dismutase activity in cardiac and skeletal muscles in young rats. J Nutr. 1984 Dec;114(12):2235–2240. doi: 10.1093/jn/114.12.2235. [DOI] [PubMed] [Google Scholar]
  27. Leto S., Kokkonen G. C., Barrows C. H. Dietary protein life-span, and physiological variables in female mice. J Gerontol. 1976 Mar;31(2):149–154. doi: 10.1093/geronj/31.2.149. [DOI] [PubMed] [Google Scholar]
  28. Leto S., Kokkonen G. C., Barrows C. H., Jr Dietary protein, life-span, and biochemical variables in female mice. J Gerontol. 1976 Mar;31(2):144–148. doi: 10.1093/geronj/31.2.144. [DOI] [PubMed] [Google Scholar]
  29. Levine R. L., Garland D., Oliver C. N., Amici A., Climent I., Lenz A. G., Ahn B. W., Shaltiel S., Stadtman E. R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464–478. doi: 10.1016/0076-6879(90)86141-h. [DOI] [PubMed] [Google Scholar]
  30. Lok E., Scott F. W., Mongeau R., Nera E. A., Malcolm S., Clayson D. B. Calorie restriction and cellular proliferation in various tissues of the female Swiss Webster mouse. Cancer Lett. 1990 May 15;51(1):67–73. doi: 10.1016/0304-3835(90)90232-m. [DOI] [PubMed] [Google Scholar]
  31. Masoro E. J., Yu B. P., Bertrand H. A. Action of food restriction in delaying the aging process. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4239–4241. doi: 10.1073/pnas.79.13.4239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. McCarter R., Masoro E. J., Yu B. P. Does food restriction retard aging by reducing the metabolic rate? Am J Physiol. 1985 Apr;248(4 Pt 1):E488–E490. doi: 10.1152/ajpendo.1985.248.4.E488. [DOI] [PubMed] [Google Scholar]
  33. Meydani S. N., Lipman R., Blumberg J. B., Taylor A. Dietary energy restriction decreases ex vivo spleen prostaglandin E2 synthesis in Emory mice. J Nutr. 1990 Jan;120(1):112–115. doi: 10.1093/jn/120.1.112. [DOI] [PubMed] [Google Scholar]
  34. Nakagawa I., Masana Y. Effect of protein nutrition on growth and life span in the rat. J Nutr. 1971 May;101(5):613–620. doi: 10.1093/jn/101.5.613. [DOI] [PubMed] [Google Scholar]
  35. Oliver C. N., Ahn B. W., Moerman E. J., Goldstein S., Stadtman E. R. Age-related changes in oxidized proteins. J Biol Chem. 1987 Apr 25;262(12):5488–5491. [PubMed] [Google Scholar]
  36. Oliver C. N., Starke-Reed P. E., Stadtman E. R., Liu G. J., Carney J. M., Floyd R. A. Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5144–5147. doi: 10.1073/pnas.87.13.5144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Reznick A. Z., Cross C. E., Hu M. L., Suzuki Y. J., Khwaja S., Safadi A., Motchnik P. A., Packer L., Halliwell B. Modification of plasma proteins by cigarette smoke as measured by protein carbonyl formation. Biochem J. 1992 Sep 1;286(Pt 2):607–611. doi: 10.1042/bj2860607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Richter C., Park J. W., Ames B. N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6465–6467. doi: 10.1073/pnas.85.17.6465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Roe F. J., Lee P. N., Conybeare G., Tobin G., Kelly D., Prentice D., Matter B. Risks of premature death and cancer predicted by body weight in early adult life. Hum Exp Toxicol. 1991 Jul;10(4):285–288. doi: 10.1177/096032719101000408. [DOI] [PubMed] [Google Scholar]
  40. Sepúlveda F. V., Burton K. A., Clarkson G. M., Syme G. Cell differentiation and L-ornithine decarboxylase activity in the small intestine of rats fed low and high protein diets. Biochim Biophys Acta. 1982 Jun 16;716(3):439–442. doi: 10.1016/0304-4165(82)90038-1. [DOI] [PubMed] [Google Scholar]
  41. Shigenaga M. K., Gimeno C. J., Ames B. N. Urinary 8-hydroxy-2'-deoxyguanosine as a biological marker of in vivo oxidative DNA damage. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9697–9701. doi: 10.1073/pnas.86.24.9697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Stadtman E. R., Oliver C. N. Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem. 1991 Feb 5;266(4):2005–2008. [PubMed] [Google Scholar]
  43. Starke-Reed P. E., Oliver C. N. Protein oxidation and proteolysis during aging and oxidative stress. Arch Biochem Biophys. 1989 Dec;275(2):559–567. doi: 10.1016/0003-9861(89)90402-5. [DOI] [PubMed] [Google Scholar]
  44. Tatsuta M., Iishi H., Baba M., Uehara H., Nakaizumi A., Taniguchi H. Enhanced induction of gastric carcinogenesis by N-methyl-N'-nitro-N-nitrosoguanidine in Wistar rats fed a low-protein diet. Cancer Res. 1991 Jul 1;51(13):3493–3496. [PubMed] [Google Scholar]
  45. Weindruch R., Devens B. H., Raff H. V., Walford R. L. Influence of dietary restriction and aging on natural killer cell activity in mice. J Immunol. 1983 Feb;130(2):993–996. [PubMed] [Google Scholar]
  46. Weindruch R., Walford R. L., Fligiel S., Guthrie D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr. 1986 Apr;116(4):641–654. doi: 10.1093/jn/116.4.641. [DOI] [PubMed] [Google Scholar]
  47. Williams G. C., Nesse R. M. The dawn of Darwinian medicine. Q Rev Biol. 1991 Mar;66(1):1–22. doi: 10.1086/417048. [DOI] [PubMed] [Google Scholar]
  48. Youngman L. D., Campbell T. C. High protein intake promotes the growth of hepatic preneoplastic foci in Fischer #344 rats: evidence that early remodeled foci retain the potential for future growth. J Nutr. 1991 Sep;121(9):1454–1461. doi: 10.1093/jn/121.9.1454. [DOI] [PubMed] [Google Scholar]
  49. Youngman L. D., Campbell T. C. Inhibition of aflatoxin B1-induced gamma-glutamyltranspeptidase positive (GGT+) hepatic preneoplastic foci and tumors by low protein diets: evidence that altered GGT+ foci indicate neoplastic potential. Carcinogenesis. 1992 Sep;13(9):1607–1613. doi: 10.1093/carcin/13.9.1607. [DOI] [PubMed] [Google Scholar]
  50. Yu B. P., Masoro E. J., McMahan C. A. Nutritional influences on aging of Fischer 344 rats: I. Physical, metabolic, and longevity characteristics. J Gerontol. 1985 Nov;40(6):657–670. doi: 10.1093/geronj/40.6.657. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES