Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Oct 15;89(20):9539–9543. doi: 10.1073/pnas.89.20.9539

Birth and migration of neurons in the central posterior/prepacemaker nucleus during adulthood in weakly electric knifefish (Eigenmannia sp.).

G K Zupanc 1, M M Zupanc 1
PMCID: PMC50167  PMID: 1409663

Abstract

In contrast to mammals, fish maintain their capacity to generate neurons in the central nervous system even during adulthood for prolonged periods of life. By employing immunohistochemical, autoradiographic, and electron microscopic techniques, we studied such a postnatal neurogenesis within the complex of the central posterior/prepacemaker nucleus (CP/PPn) in knifefish (Eigenmannia sp.), a weakly electric teleost. The CP/PPn is a bilateral cluster of neurons in the thalamus. It controls frequency modulations of the electric organ discharge as they are used during social interactions. In the CP/PPn region adjacent to the wall of the third ventricle ("ventricular zone"), cells are born continuously and at high rates. They undergo multiple cell divisions before differentiating into neurons. Concomitant with this development, the newborn neurons migrate toward lateral regions of the CP/PPn. In the course of this lateral migration, they appear to acquire immunological and morphological characteristics that are typical for mature CP/PPn neurons. We hypothesize that at least some of the newly generated cells develop finally into functional CP/PPn neurons.

Full text

PDF
9541

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birse S. C., Leonard R. B., Coggeshall R. E. Neuronal increase in various areas of the nervous system of the guppy, Lebistes. J Comp Neurol. 1980 Nov 15;194(2):291–301. doi: 10.1002/cne.901940202. [DOI] [PubMed] [Google Scholar]
  2. Gregory W. A., Edmondson J. C., Hatten M. E., Mason C. A. Cytology and neuron-glial apposition of migrating cerebellar granule cells in vitro. J Neurosci. 1988 May;8(5):1728–1738. doi: 10.1523/JNEUROSCI.08-05-01728.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hitchcock P. F., Raymond P. A. Retinal regeneration. Trends Neurosci. 1992 Mar;15(3):103–108. doi: 10.1016/0166-2236(92)90020-9. [DOI] [PubMed] [Google Scholar]
  4. KIRSCHE W., KIRSCHE K. [Experimental studies on the problem of regeneration and function of the tectum opticum of Carassium carassium L]. Z Mikrosk Anat Forsch. 1961;67:140–182. [PubMed] [Google Scholar]
  5. Kawasaki M., Maler L., Rose G. J., Heiligenberg W. Anatomical and functional organization of the prepacemaker nucleus in gymnotiform electric fish: the accommodation of two behaviors in one nucleus. J Comp Neurol. 1988 Oct 1;276(1):113–131. doi: 10.1002/cne.902760108. [DOI] [PubMed] [Google Scholar]
  6. Kranz D., Richter W. Autoradiographische Untersuchungen zur DNS-Synthese im Cerebellum und in der Medulla oblongata von Teleostiern verschiedenen Lebensalters. Z Mikrosk Anat Forsch. 1970;82(2):264–292. [PubMed] [Google Scholar]
  7. Kranz D., Richter W. Autoradiographische Untersuchungen über die Lokalisation der Matrixzonen des Diencephalons von juvenilen und adulten Lebistes reticulatus (Teleostei) Z Mikrosk Anat Forsch. 1970;82(1):42–66. [PubMed] [Google Scholar]
  8. Maler L., Sas E., Johnston S., Ellis W. An atlas of the brain of the electric fish Apteronotus leptorhynchus. J Chem Neuroanat. 1991 Jan-Feb;4(1):1–38. doi: 10.1016/0891-0618(91)90030-g. [DOI] [PubMed] [Google Scholar]
  9. Rahmann H. Autoradiographische Untersuchungen zum DNS-Stoffwechsel (Mitose-Häufigkeit) im ZNS von Brachydanio rerio HAM. BUCH. (Cyprinidae, Pisces) J Hirnforsch. 1968;10(3):279–284. [PubMed] [Google Scholar]
  10. Rakic P. Limits of neurogenesis in primates. Science. 1985 Mar 1;227(4690):1054–1056. doi: 10.1126/science.3975601. [DOI] [PubMed] [Google Scholar]
  11. Rakic P. Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J Comp Neurol. 1971 Mar;141(3):283–312. doi: 10.1002/cne.901410303. [DOI] [PubMed] [Google Scholar]
  12. Rakic P., Stensas L. J., Sayre E., Sidman R. L. Computer-aided three-dimensional reconstruction and quantitative analysis of cells from serial electron microscopic montages of foetal monkey brain. Nature. 1974 Jul 5;250(461):31–34. doi: 10.1038/250031a0. [DOI] [PubMed] [Google Scholar]
  13. Richter W., Kranz D. Autoradiographische Untersuchungen über die Abhängigkeit des 3H-Thymidin-Index vom Lebensalter in den Matrixzonen des Telencephalons von Lebistes reticulatus (Teleostei) Z Mikrosk Anat Forsch. 1970;81(3):530–554. [PubMed] [Google Scholar]
  14. Richter W., Kranz D. Die Abhängigkeit der DNS-Synthese in den Matrixzonen des Mesencephalons vom Lebensalter der Versuchstiere (Lebistes reticulatus--Teleostei). Autoradiographische Untersuchungen. Z Mikrosk Anat Forsch. 1970;82(1):76–92. [PubMed] [Google Scholar]
  15. Zupanc G. K. Clustering of cell bodies, bundling of dendrites, and gap junctions: morphological substrate for electrical coupling in the prepacemaker nucleus. Neurosci Lett. 1991 Aug 5;129(1):29–34. doi: 10.1016/0304-3940(91)90713-4. [DOI] [PubMed] [Google Scholar]
  16. Zupanc G. K., Heiligenberg W. Sexual maturity-dependent changes in neuronal morphology in the prepacemaker nucleus of adult weakly electric knifefish, Eigenmannia. J Neurosci. 1989 Nov;9(11):3816–3827. doi: 10.1523/JNEUROSCI.09-11-03816.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zupanc G. K., Heiligenberg W. The structure of the diencephalic prepacemaker nucleus revisited: light microscopic and ultrastructural studies. J Comp Neurol. 1992 Sep 22;323(4):558–569. doi: 10.1002/cne.903230408. [DOI] [PubMed] [Google Scholar]
  18. Zupanc G. K., Maler L., Heiligenberg W. Somatostatin-like immunoreactivity in the region of the prepacemaker nucleus in weakly electric knifefish, Eigenmannia: a quantitative analysis. Brain Res. 1991 Sep 20;559(2):249–260. doi: 10.1016/0006-8993(91)90009-k. [DOI] [PubMed] [Google Scholar]
  19. Zupanc G. K., Okawara Y., Zupanc M. M., Fryer J. N., Maler L. In situ hybridization of putative somatostatin mRNA in the brain of electric gymnotiform fish. Neuroreport. 1991 Nov;2(11):707–710. doi: 10.1097/00001756-199111000-00019. [DOI] [PubMed] [Google Scholar]
  20. Zupanc G. K. The synaptic organization of the prepacemaker nucleus in weakly electric knifefish, Eigenmannia: a quantitative ultrastructural study. J Neurocytol. 1991 Oct;20(10):818–833. doi: 10.1007/BF01191733. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES