Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Nov 1;89(21):10449–10453. doi: 10.1073/pnas.89.21.10449

Alpha-crystallin can function as a molecular chaperone.

J Horwitz 1
PMCID: PMC50356  PMID: 1438232

Abstract

The alpha-crystallins (alpha A and alpha B) are major lens structural proteins of the vertebrate eye that are related to the small heat shock protein family. In addition, crystallins (especially alpha B) are found in many cells and organs outside the lens, and alpha B is overexpressed in several neurological disorders and in cell lines under stress conditions. Here I show that alpha-crystallin can function as a molecular chaperone. Stoichiometric amounts of alpha A and alpha B suppress thermally induced aggregation of various enzymes. In particular, alpha-crystallin is very efficient in suppressing the thermally induced aggregation of beta- and gamma-crystallins, the two other major mammalian structural lens proteins. alpha-Crystallin was also effective in preventing aggregation and in refolding guanidine hydrochloride-denatured gamma-crystallin, as judged by circular dichroism spectroscopy. My results thus indicate that alpha-crystallin refracts light and protects proteins from aggregation in the transparent eye lens and that in nonlens cells alpha-crystallin may have other functions in addition to its capacity to suppress aggregation of proteins.

Full text

PDF
10450

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benedek G. B., Chylack L. T., Jr, Libondi T., Magnante P., Pennett M. Quantitative detection of the molecular changes associated with early cataractogenesis in the living human lens using quasielastic light scattering. Curr Eye Res. 1987 Dec;6(12):1421–1432. doi: 10.3109/02713688709044506. [DOI] [PubMed] [Google Scholar]
  2. Bhat S. P., Nagineni C. N. alpha B subunit of lens-specific protein alpha-crystallin is present in other ocular and non-ocular tissues. Biochem Biophys Res Commun. 1989 Jan 16;158(1):319–325. doi: 10.1016/s0006-291x(89)80215-3. [DOI] [PubMed] [Google Scholar]
  3. Blundell T., Lindley P., Miller L., Moss D., Slingsby C., Tickle I., Turnell B., Wistow G. The molecular structure and stability of the eye lens: x-ray analysis of gamma-crystallin II. Nature. 1981 Feb 26;289(5800):771–777. doi: 10.1038/289771a0. [DOI] [PubMed] [Google Scholar]
  4. Buchner J., Schmidt M., Fuchs M., Jaenicke R., Rudolph R., Schmid F. X., Kiefhaber T. GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry. 1991 Feb 12;30(6):1586–1591. doi: 10.1021/bi00220a020. [DOI] [PubMed] [Google Scholar]
  5. Castoro J. A., Bettelheim F. A. Thermal denaturation of alpha-crystallin. Lens Eye Toxic Res. 1989;6(4):781–793. [PubMed] [Google Scholar]
  6. Chiesa R., Gawinowicz-Kolks M. A., Kleiman N. J., Spector A. Definition and comparison of the phosphorylation sites of the A and B chains of bovine alpha-crystallin. Exp Eye Res. 1988 Feb;46(2):199–208. doi: 10.1016/s0014-4835(88)80077-0. [DOI] [PubMed] [Google Scholar]
  7. Chiou S. H., Azari P. Physicochemical characterization of alpha-crystallins from bovine lenses: hydrodynamic and conformational properties. J Protein Chem. 1989 Feb;8(1):1–17. doi: 10.1007/BF01025075. [DOI] [PubMed] [Google Scholar]
  8. Dasgupta S., Hohman T. C., Carper D. Hypertonic stress induces alpha B-crystallin expression. Exp Eye Res. 1992 Mar;54(3):461–470. doi: 10.1016/0014-4835(92)90058-z. [DOI] [PubMed] [Google Scholar]
  9. Dubin R. A., Wawrousek E. F., Piatigorsky J. Expression of the murine alpha B-crystallin gene is not restricted to the lens. Mol Cell Biol. 1989 Mar;9(3):1083–1091. doi: 10.1128/mcb.9.3.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Duguid J. R., Rohwer R. G., Seed B. Isolation of cDNAs of scrapie-modulated RNAs by subtractive hybridization of a cDNA library. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5738–5742. doi: 10.1073/pnas.85.15.5738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ellis R. J., van der Vies S. M. Molecular chaperones. Annu Rev Biochem. 1991;60:321–347. doi: 10.1146/annurev.bi.60.070191.001541. [DOI] [PubMed] [Google Scholar]
  12. Gething M. J., Sambrook J. Protein folding in the cell. Nature. 1992 Jan 2;355(6355):33–45. doi: 10.1038/355033a0. [DOI] [PubMed] [Google Scholar]
  13. Hoenders H. J., Bloemendal H. The N-terminus of the lens protein alpha-crystallin. Biochim Biophys Acta. 1967 Sep 19;147(1):183–185. doi: 10.1016/0005-2795(67)90105-5. [DOI] [PubMed] [Google Scholar]
  14. Horwitz J., Kabasawa I., Kinoshita J. H. Conformation of gamma-crystallins of the calf lens: effects of temperature and denaturing agents. Exp Eye Res. 1977 Aug;25(2):199–208. doi: 10.1016/0014-4835(77)90132-4. [DOI] [PubMed] [Google Scholar]
  15. Höll-Neugebauer B., Rudolph R., Schmidt M., Buchner J. Reconstitution of a heat shock effect in vitro: influence of GroE on the thermal aggregation of alpha-glucosidase from yeast. Biochemistry. 1991 Dec 17;30(50):11609–11614. doi: 10.1021/bi00114a001. [DOI] [PubMed] [Google Scholar]
  16. Ingolia T. D., Craig E. A. Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2360–2364. doi: 10.1073/pnas.79.7.2360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Iwaki T., Kume-Iwaki A., Liem R. K., Goldman J. E. Alpha B-crystallin is expressed in non-lenticular tissues and accumulates in Alexander's disease brain. Cell. 1989 Apr 7;57(1):71–78. doi: 10.1016/0092-8674(89)90173-6. [DOI] [PubMed] [Google Scholar]
  18. Kato K., Shinohara H., Goto S., Inaguma Y., Morishita R., Asano T. Copurification of small heat shock protein with alpha B crystallin from human skeletal muscle. J Biol Chem. 1992 Apr 15;267(11):7718–7725. [PubMed] [Google Scholar]
  19. Kato K., Shinohara H., Kurobe N., Goto S., Inaguma Y., Ohshima K. Immunoreactive alpha A crystallin in rat non-lenticular tissues detected with a sensitive immunoassay method. Biochim Biophys Acta. 1991 Oct 25;1080(2):173–180. doi: 10.1016/0167-4838(91)90146-q. [DOI] [PubMed] [Google Scholar]
  20. Klemenz R., Fröhli E., Aoyama A., Hoffmann S., Simpson R. J., Moritz R. L., Schäfer R. Alpha B crystallin accumulation is a specific response to Ha-ras and v-mos oncogene expression in mouse NIH 3T3 fibroblasts. Mol Cell Biol. 1991 Feb;11(2):803–812. doi: 10.1128/mcb.11.2.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Klemenz R., Fröhli E., Steiger R. H., Schäfer R., Aoyama A. Alpha B-crystallin is a small heat shock protein. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3652–3656. doi: 10.1073/pnas.88.9.3652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Langer T., Lu C., Echols H., Flanagan J., Hayer M. K., Hartl F. U. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature. 1992 Apr 23;356(6371):683–689. doi: 10.1038/356683a0. [DOI] [PubMed] [Google Scholar]
  23. Lewis G. P., Erickson P. A., Kaska D. D., Fisher S. K. An immunocytochemical comparison of Müller cells and astrocytes in the cat retina. Exp Eye Res. 1988 Dec;47(6):839–853. doi: 10.1016/0014-4835(88)90067-x. [DOI] [PubMed] [Google Scholar]
  24. Lowe J., Landon M., Pike I., Spendlove I., McDermott H., Mayer R. J. Dementia with beta-amyloid deposition: involvement of alpha B-crystallin supports two main diseases. Lancet. 1990 Aug 25;336(8713):515–516. doi: 10.1016/0140-6736(90)92075-s. [DOI] [PubMed] [Google Scholar]
  25. Maiti M., Kono M., Chakrabarti B. Heat-induced changes in the conformation of alpha- and beta-crystallins: unique thermal stability of alpha-crystallin. FEBS Lett. 1988 Aug 15;236(1):109–114. doi: 10.1016/0014-5793(88)80295-3. [DOI] [PubMed] [Google Scholar]
  26. Mandal K., Chakrabarti B., Thomson J., Siezen R. J. Structure and stability of gamma-crystallins. Denaturation and proteolysis behavior. J Biol Chem. 1987 Jun 15;262(17):8096–8102. [PubMed] [Google Scholar]
  27. McFall-Ngai M. J., Horwitz J. A comparative study of the thermal stability of the vertebrate eye lens: Antarctic ice fish to the desert iguana. Exp Eye Res. 1990 Jun;50(6):703–709. doi: 10.1016/0014-4835(90)90117-d. [DOI] [PubMed] [Google Scholar]
  28. Moscona A. A., Fox L., Smith J., Degenstein L. Antiserum to lens antigens immunostains Müller glia cells in the neural retina. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5570–5573. doi: 10.1073/pnas.82.16.5570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Murano S., Thweatt R., Shmookler Reis R. J., Jones R. A., Moerman E. J., Goldstein S. Diverse gene sequences are overexpressed in werner syndrome fibroblasts undergoing premature replicative senescence. Mol Cell Biol. 1991 Aug;11(8):3905–3914. doi: 10.1128/mcb.11.8.3905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nene V., Dunne D. W., Johnson K. S., Taylor D. W., Cordingley J. S. Sequence and expression of a major egg antigen from Schistosoma mansoni. Homologies to heat shock proteins and alpha-crystallins. Mol Biochem Parasitol. 1986 Nov;21(2):179–188. doi: 10.1016/0166-6851(86)90021-6. [DOI] [PubMed] [Google Scholar]
  31. Pauli D., Tonka C. H., Tissieres A., Arrigo A. P. Tissue-specific expression of the heat shock protein HSP27 during Drosophila melanogaster development. J Cell Biol. 1990 Sep;111(3):817–828. doi: 10.1083/jcb.111.3.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Piatigorsky J. Lens crystallins. Innovation associated with changes in gene regulation. J Biol Chem. 1992 Mar 5;267(7):4277–4280. [PubMed] [Google Scholar]
  33. Piatigorsky J., O'Brien W. E., Norman B. L., Kalumuck K., Wistow G. J., Borras T., Nickerson J. M., Wawrousek E. F. Gene sharing by delta-crystallin and argininosuccinate lyase. Proc Natl Acad Sci U S A. 1988 May;85(10):3479–3483. doi: 10.1073/pnas.85.10.3479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Renkawek K., de Jong W. W., Merck K. B., Frenken C. W., van Workum F. P., Bosman G. J. alpha B-crystallin is present in reactive glia in Creutzfeldt-Jakob disease. Acta Neuropathol. 1992;83(3):324–327. doi: 10.1007/BF00296796. [DOI] [PubMed] [Google Scholar]
  35. Roquemore E. P., Dell A., Morris H. R., Panico M., Reason A. J., Savoy L. A., Wistow G. J., Zigler J. S., Jr, Earles B. J., Hart G. W. Vertebrate lens alpha-crystallins are modified by O-linked N-acetylglucosamine. J Biol Chem. 1992 Jan 5;267(1):555–563. [PubMed] [Google Scholar]
  36. Sherman MYu, Goldberg A. L. Heat shock in Escherichia coli alters the protein-binding properties of the chaperonin groEL by inducing its phosphorylation. Nature. 1992 May 14;357(6374):167–169. doi: 10.1038/357167a0. [DOI] [PubMed] [Google Scholar]
  37. Spector A., Chiesa R., Sredy J., Garner W. cAMP-dependent phosphorylation of bovine lens alpha-crystallin. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4712–4716. doi: 10.1073/pnas.82.14.4712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Steadman B. L., Trautman P. A., Lawson E. Q., Raymond M. J., Mood D. A., Thomson J. A., Middaugh C. R. A differential scanning calorimetric study of the bovine lens crystallins. Biochemistry. 1989 Dec 12;28(25):9653–9658. doi: 10.1021/bi00451a017. [DOI] [PubMed] [Google Scholar]
  39. Tardieu A., Laporte D., Licinio P., Krop B., Delaye M. Calf lens alpha-crystallin quaternary structure. A three-layer tetrahedral model. J Mol Biol. 1986 Dec 20;192(4):711–724. doi: 10.1016/0022-2836(86)90023-9. [DOI] [PubMed] [Google Scholar]
  40. Thomson J. A., Augusteyn R. C. On the structure of alpha-crystallin: construction of hybrid molecules and homopolymers. Biochim Biophys Acta. 1989 Feb 23;994(3):246–252. doi: 10.1016/0167-4838(89)90300-2. [DOI] [PubMed] [Google Scholar]
  41. Van Der Ouderaa F. J., De Jong W. W., Hilderink A., Bloemendal H. The amino-acids sequence of the alphaB2 chain of bovine alpha-crystallin. Eur J Biochem. 1974 Nov 1;49(1):157–168. doi: 10.1111/j.1432-1033.1974.tb03821.x. [DOI] [PubMed] [Google Scholar]
  42. Voorter C. E., Mulders J. W., Bloemendal H., de Jong W. W. Some aspects of the phosphorylation of alpha-crystallin A. Eur J Biochem. 1986 Oct 1;160(1):203–210. doi: 10.1111/j.1432-1033.1986.tb09958.x. [DOI] [PubMed] [Google Scholar]
  43. Voorter C. E., Roersma E. S., Bloemendal H., de Jong W. W. Age-dependent deamidation of chicken alpha A-crystallin. FEBS Lett. 1987 Sep 14;221(2):249–252. doi: 10.1016/0014-5793(87)80935-3. [DOI] [PubMed] [Google Scholar]
  44. Walsh M. T., Sen A. C., Chakrabarti B. Micellar subunit assembly in a three-layer model of oligomeric alpha-crystallin. J Biol Chem. 1991 Oct 25;266(30):20079–20084. [PubMed] [Google Scholar]
  45. Wickner W., Driessen A. J., Hartl F. U. The enzymology of protein translocation across the Escherichia coli plasma membrane. Annu Rev Biochem. 1991;60:101–124. doi: 10.1146/annurev.bi.60.070191.000533. [DOI] [PubMed] [Google Scholar]
  46. de Jong W. W., Leunissen J. A., Leenen P. J., Zweers A., Versteeg M. Dogfish alpha-crystallin sequences. Comparison with small heat shock proteins and Schistosoma egg antigen. J Biol Chem. 1988 Apr 15;263(11):5141–5149. [PubMed] [Google Scholar]
  47. de Jong W. W., van Kleef F. S., Bloemendal H. Intracellular carboxy-terminal degradation of the alpha A chain of alpha-crystallin. Eur J Biochem. 1974 Oct 1;48(1):271–276. doi: 10.1111/j.1432-1033.1974.tb03765.x. [DOI] [PubMed] [Google Scholar]
  48. van Kleef F. S., Nijzink-Maas M. J., Hoenders H. J. Intracellular degradation of alpha-crystallin. Fractionation and characterization of degraded alpha A-chains. Eur J Biochem. 1974 Oct 2;48(2):563–570. doi: 10.1111/j.1432-1033.1974.tb03798.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES