Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Nov 15;89(22):10832–10836. doi: 10.1073/pnas.89.22.10832

Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer.

W J Rettig 1, P Garin-Chesa 1, J H Healey 1, S L Su 1, E A Jaffe 1, L J Old 1
PMCID: PMC50436  PMID: 1438285

Abstract

Cell surface antigens of transformed cells are the traditional targets for antibody-guided detection and therapy of solid neoplasms. Alternative targets may be found in the tumor stroma, which contains newly formed blood vessels, reactive fibroblasts, and extracellular matrix proteins. The F19 cell surface glycoprotein of reactive fibroblasts is a prototypic stromal antigen since it is found in the stroma of > 90% of common epithelial cancers but is absent or expressed at low levels in normal tissues and benign epithelial tumors. In the present study, we define an additional tumor stromal antigen, FB5, that is selectively expressed in vascular endothelial cells of malignant tumors. Immunohistochemical analysis of 128 tumors identified FB5 in endothelial cells in 67% of the samples (including 41 of 61 sarcomas, 26 of 37 carcinomas, and 18 of 25 neuroectodermal tumors) whereas normal blood vessels and other adult tissues tested lacked FB5 expression. In vitro studies showed that FB5 is a M(r) 165,000 cell surface glycoprotein, comprised of a M(r) 95,000 core polypeptide and highly sialyated O-linked oligosaccharides but few if any N-linked sugars, and that the FB5 gene is located on chromosome 11q13-qter. The restricted tissue distribution of the FB5 protein, which we refer to as endosialin, suggests strategies for tumor imaging and therapy that are aimed primarily at the tumor vasculature.

Full text

PDF
10833

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basset P., Bellocq J. P., Wolf C., Stoll I., Hutin P., Limacher J. M., Podhajcer O. L., Chenard M. P., Rio M. C., Chambon P. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature. 1990 Dec 20;348(6303):699–704. doi: 10.1038/348699a0. [DOI] [PubMed] [Google Scholar]
  2. Cullen K. J., Smith H. S., Hill S., Rosen N., Lippman M. E. Growth factor messenger RNA expression by human breast fibroblasts from benign and malignant lesions. Cancer Res. 1991 Sep 15;51(18):4978–4985. [PubMed] [Google Scholar]
  3. Fellinger E. J., Garin-Chesa P., Su S. L., DeAngelis P., Lane J. M., Rettig W. J. Biochemical and genetic characterization of the HBA71 Ewing's sarcoma cell surface antigen. Cancer Res. 1991 Jan 1;51(1):336–340. [PubMed] [Google Scholar]
  4. Folkman J. Tumor angiogenesis. Adv Cancer Res. 1985;43:175–203. doi: 10.1016/s0065-230x(08)60946-x. [DOI] [PubMed] [Google Scholar]
  5. Fukuda M. Leukosialin, a major O-glycan-containing sialoglycoprotein defining leukocyte differentiation and malignancy. Glycobiology. 1991 Sep;1(4):347–356. doi: 10.1093/glycob/1.4.347. [DOI] [PubMed] [Google Scholar]
  6. Garin-Chesa P., Melamed M. R., Rettig W. J. Immunohistochemical analysis of human neuronectin expression in normal, reactive, and neoplastic tissues. J Histochem Cytochem. 1989 Dec;37(12):1767–1776. doi: 10.1177/37.12.2685107. [DOI] [PubMed] [Google Scholar]
  7. Garin-Chesa P., Old L. J., Rettig W. J. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7235–7239. doi: 10.1073/pnas.87.18.7235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grey A. M., Schor A. M., Rushton G., Ellis I., Schor S. L. Purification of the migration stimulating factor produced by fetal and breast cancer patient fibroblasts. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2438–2442. doi: 10.1073/pnas.86.7.2438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Howell S. M., Molgaard H. V., Greaves M. F., Spurr N. K. Localisation of the gene coding for the haemopoietic stem cell antigen CD34 to chromosome 1q32. Hum Genet. 1991 Sep;87(5):625–627. doi: 10.1007/BF00209027. [DOI] [PubMed] [Google Scholar]
  10. Jaffe E. A., Grulich J., Weksler B. B., Hampel G., Watanabe K. Correlation between thrombin-induced prostacyclin production and inositol trisphosphate and cytosolic free calcium levels in cultured human endothelial cells. J Biol Chem. 1987 Jun 25;262(18):8557–8565. [PubMed] [Google Scholar]
  11. Jaffe E. A., Nachman R. L., Becker C. G., Minick C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973 Nov;52(11):2745–2756. doi: 10.1172/JCI107470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kantor R. R., Mattes M. J., Lloyd K. O., Old L. J., Albino A. P. Biochemical analysis of two cell surface glycoprotein complexes, very common antigen 1 and very common antigen 2. Relationship to very late activation T cell antigens. J Biol Chem. 1987 Nov 5;262(31):15158–15165. [PubMed] [Google Scholar]
  13. Klein G., Klein E. Evolution of tumours and the impact of molecular oncology. Nature. 1985 May 16;315(6016):190–195. doi: 10.1038/315190a0. [DOI] [PubMed] [Google Scholar]
  14. Kuan S. F., Byrd J. C., Basbaum C., Kim Y. S. Inhibition of mucin glycosylation by aryl-N-acetyl-alpha-galactosaminides in human colon cancer cells. J Biol Chem. 1989 Nov 15;264(32):19271–19277. [PubMed] [Google Scholar]
  15. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  16. Lienard D., Ewalenko P., Delmotte J. J., Renard N., Lejeune F. J. High-dose recombinant tumor necrosis factor alpha in combination with interferon gamma and melphalan in isolation perfusion of the limbs for melanoma and sarcoma. J Clin Oncol. 1992 Jan;10(1):52–60. doi: 10.1200/JCO.1992.10.1.52. [DOI] [PubMed] [Google Scholar]
  17. Old L. J. Tumor necrosis factor (TNF). Science. 1985 Nov 8;230(4726):630–632. doi: 10.1126/science.2413547. [DOI] [PubMed] [Google Scholar]
  18. Rettig W. J., Cordon-Cardo C., Ng J. S., Oettgen H. F., Old L. J., Lloyd K. O. High-molecular-weight glycoproteins of human teratocarcinoma defined by monoclonal antibodies to carbohydrate determinants. Cancer Res. 1985 Feb;45(2):815–821. [PubMed] [Google Scholar]
  19. Rettig W. J., Dracopoli N. C., Goetzger T. A., Spengler B. A., Biedler J. L., Oettgen H. F., Old L. J. Somatic cell genetic analysis of human cell surface antigens: chromosomal assignments and regulation of expression in rodent-human hybrid cells. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6437–6441. doi: 10.1073/pnas.81.20.6437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rettig W. J., Garin-Chesa P., Beresford H. R., Oettgen H. F., Melamed M. R., Old L. J. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells. Proc Natl Acad Sci U S A. 1988 May;85(9):3110–3114. doi: 10.1073/pnas.85.9.3110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rettig W. J., Garin-Chesa P. Cell type-specific control of human neuronectin secretion by polypeptide mediators and phorbol ester. J Histochem Cytochem. 1989 Dec;37(12):1777–1786. doi: 10.1177/37.12.2685108. [DOI] [PubMed] [Google Scholar]
  22. Rettig W. J., Nishimura H., Yenamandra A. K., Seki T., Obata F., Beresford H. R., Old L. J., Silver J. Differential expression of the human Thy-1 gene in rodent-human somatic cell hybrids [corrected]. J Immunol. 1987 Jun 15;138(12):4484–4489. [PubMed] [Google Scholar]
  23. Rettig W. J., Old L. J. Immunogenetics of human cell surface differentiation. Annu Rev Immunol. 1989;7:481–511. doi: 10.1146/annurev.iy.07.040189.002405. [DOI] [PubMed] [Google Scholar]
  24. Rettig W. J., Triche T. J., Bander N. H. Somatic cell genetic analysis of human cell surface antigens 5.1H11 and F35/9 (gp45). Genomics. 1990 Jan;6(1):178–183. doi: 10.1016/0888-7543(90)90464-6. [DOI] [PubMed] [Google Scholar]
  25. Roth G. J. Platelets and blood vessels: the adhesion event. Immunol Today. 1992 Mar;13(3):100–105. doi: 10.1016/0167-5699(92)90150-6. [DOI] [PubMed] [Google Scholar]
  26. Satterthwaite A. B., Borson R., Tenen D. G. Regulation of the gene for CD34, a human hematopoietic stem cell antigen, in KG-1 cells. Blood. 1990 Jun 15;75(12):2299–2304. [PubMed] [Google Scholar]
  27. Schlingemann R. O., Rietveld F. J., Kwaspen F., van de Kerkhof P. C., de Waal R. M., Ruiter D. J. Differential expression of markers for endothelial cells, pericytes, and basal lamina in the microvasculature of tumors and granulation tissue. Am J Pathol. 1991 Jun;138(6):1335–1347. [PMC free article] [PubMed] [Google Scholar]
  28. Shimizu Y., Newman W., Tanaka Y., Shaw S. Lymphocyte interactions with endothelial cells. Immunol Today. 1992 Mar;13(3):106–112. doi: 10.1016/0167-5699(92)90151-V. [DOI] [PubMed] [Google Scholar]
  29. Simmons D. L., Satterthwaite A. B., Tenen D. G., Seed B. Molecular cloning of a cDNA encoding CD34, a sialomucin of human hematopoietic stem cells. J Immunol. 1992 Jan 1;148(1):267–271. [PubMed] [Google Scholar]
  30. Zimmerman G. A., Prescott S. M., McIntyre T. M. Endothelial cell interactions with granulocytes: tethering and signaling molecules. Immunol Today. 1992 Mar;13(3):93–100. doi: 10.1016/0167-5699(92)90149-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES