Skip to main content
The British Journal of Ophthalmology logoLink to The British Journal of Ophthalmology
. 1995 Aug;79(8):735–741. doi: 10.1136/bjo.79.8.735

Strict control of glycaemia: effects on blood flow in the large retinal vessels and in the macular microcirculation.

J E Grunwald 1, C E Riva 1, B L Petrig 1, A J Brucker 1, S S Schwartz 1, S N Braunstein 1, J DuPont 1, S Grunwald 1
PMCID: PMC505235  PMID: 7547784

Abstract

AIMS--The purpose of this study was to investigate the effect of instituting strict diabetic glycaemic control on the retinal macular microcirculation and to compare this effect with that observed in the main retinal veins. METHODS--In 28 insulin dependent diabetic patients with poor glycaemic control a regimen of strict diabetic control, consisting of four daily insulin injections was instituted and maintained for 6 months. Retinal haemodynamics were investigated in the macular microcirculation by the blue field simulation technique and in the major retinal veins by a combination of bidirectional laser Doppler velocimetry and monochromatic fundus photography. Progression of diabetic retinopathy was assessed from fundus photographs taken at baseline and at the end of the study. RESULTS--Institution of strict diabetic control resulted in a significant increase in leucocyte velocity in the macular circulation (p = 0.013). No significant difference in this increase was observed between eyes that showed progression (n = 8) and no progression (n = 20) of retinopathy during the study. Significant correlations were found between relative changes over time of blood flow measured in the main retinal veins and relative changes of leucocyte velocity determined in the macular microcirculation at 2 months (p = 0.008) and 6 months (p = 0.001) but not at 5 days (p = 0.49). In the eight eyes that showed progression of retinopathy, the product of leucocyte velocity and density at baseline was significantly higher than normal (p < 0.05). During the length of this study, this product was also significantly higher in the eight eyes that showed retinopathy progression than in the 20 eyes that did not show progression (p = 0.005). CONCLUSION--Our results suggest that increased flow in the macular microcirculation may be associated with progression of retinopathy, thus supporting the hypothesis that increased blood flow may play a role in the development of diabetic microangiopathy. Although there are correlations between the changes detected in the macular microcirculation and those measured in the main retinal vessels, there are also differences which need to be further investigated in order to better understand pathogenetic mechanisms.

Full text

PDF
735

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arend O., Wolf S., Jung F., Bertram B., Pöstgens H., Toonen H., Reim M. Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifoveal capillary network. Br J Ophthalmol. 1991 Sep;75(9):514–518. doi: 10.1136/bjo.75.9.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ben-Nun J., Alder V. A., Constable I. J., Roberts C. E. The patency of the retinal vasculature to erythrocytes in retinal vascular disease. Invest Ophthalmol Vis Sci. 1990 Mar 1;31(3):464–470. [PubMed] [Google Scholar]
  3. Brinchmann-Hansen O., Dahl-Jørgensen K., Hanssen K. F., Sandvik L. Effects of intensified insulin treatment on retinal vessels in diabetic patients. Br J Ophthalmol. 1988 Sep;72(9):666–673. doi: 10.1136/bjo.72.9.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brinchmann-Hansen O., Dahl-Jørgensen K., Hanssen K. F., Sandvik L. Effects of intensified insulin treatment on various lesions of diabetic retinopathy. Am J Ophthalmol. 1985 Nov 15;100(5):644–653. doi: 10.1016/0002-9394(85)90618-x. [DOI] [PubMed] [Google Scholar]
  5. Brinchmann-Hansen O., Dahl-Jørgensen K., Hanssen K. F., Sandvik L. The response of diabetic retinopathy to 41 months of multiple insulin injections, insulin pumps, and conventional insulin therapy. Arch Ophthalmol. 1988 Sep;106(9):1242–1246. doi: 10.1001/archopht.1988.01060140402041. [DOI] [PubMed] [Google Scholar]
  6. Dahl-Jørgensen K., Brinchmann-Hansen O., Hanssen K. F., Ganes T., Kierulf P., Smeland E., Sandvik L., Aagenaes O. Effect of near normoglycaemia for two years on progression of early diabetic retinopathy, nephropathy, and neuropathy: the Oslo study. Br Med J (Clin Res Ed) 1986 Nov 8;293(6556):1195–1199. doi: 10.1136/bmj.293.6556.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dahl-Jørgensen K., Brinchmann-Hansen O., Hanssen K. F., Sandvik L., Aagenaes O. Rapid tightening of blood glucose control leads to transient deterioration of retinopathy in insulin dependent diabetes mellitus: the Oslo study. Br Med J (Clin Res Ed) 1985 Mar 16;290(6471):811–815. doi: 10.1136/bmj.290.6471.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davies E. G., Hyer S. L., Kohner E. M. Macular blood flow response to acute reduction of plasma glucose in diabetic patients measured by the blue light entoptic technique. Ophthalmology. 1990 Feb;97(2):160–164. doi: 10.1016/s0161-6420(90)32610-6. [DOI] [PubMed] [Google Scholar]
  9. Ernest J. T., Goldstick T. K., Engerman R. L. Hyperglycemia impairs retinal oxygen autoregulation in normal and diabetic dogs. Invest Ophthalmol Vis Sci. 1983 Jul;24(7):985–989. [PubMed] [Google Scholar]
  10. FRIEDMAN E., SMITH T. R., KUWABARA T. RETINAL MICROCIRCULATION IN VIVO. Invest Ophthalmol. 1964 Apr;3:217–226. [PubMed] [Google Scholar]
  11. Fallon T. J., Sleightholm M. A., Merrick C., Chahal P., Kohner E. M. The effect of acute hyperglycemia on flow velocity in the macular capillaries. Invest Ophthalmol Vis Sci. 1987 Jun;28(6):1027–1030. [PubMed] [Google Scholar]
  12. Grunwald J. E., Brucker A. J., Braunstein S. N., Schwartz S. S., Baker L., Petrig B. L., Riva C. E. Strict metabolic control and retinal blood flow in diabetes mellitus. Br J Ophthalmol. 1994 Aug;78(8):598–604. doi: 10.1136/bjo.78.8.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grunwald J. E., Brucker A. J., Schwartz S. S., Braunstein S. N., Baker L., Petrig B. L., Riva C. E. Diabetic glycemic control and retinal blood flow. Diabetes. 1990 May;39(5):602–607. doi: 10.2337/diab.39.5.602. [DOI] [PubMed] [Google Scholar]
  14. Grunwald J. E., Piltz J., Patel N., Bose S., Riva C. E. Effect of aging on retinal macular microcirculation: a blue field simulation study. Invest Ophthalmol Vis Sci. 1993 Dec;34(13):3609–3613. [PubMed] [Google Scholar]
  15. Grunwald J. E., Riva C. E., Martin D. B., Quint A. R., Epstein P. A. Effect of an insulin-induced decrease in blood glucose on the human diabetic retinal circulation. Ophthalmology. 1987 Dec;94(12):1614–1620. doi: 10.1016/s0161-6420(87)33257-9. [DOI] [PubMed] [Google Scholar]
  16. Grunwald J. E., Riva C. E., Sinclair S. H., Brucker A. J., Petrig B. L. Laser Doppler velocimetry study of retinal circulation in diabetes mellitus. Arch Ophthalmol. 1986 Jul;104(7):991–996. doi: 10.1001/archopht.1986.01050190049038. [DOI] [PubMed] [Google Scholar]
  17. Kohner E. M., Dollery C. T., Paterson J. W., Oakley N. W. Arterial fluorescein studies in diabetic retinopathy. Diabetes. 1967 Jan;16(1):1–10. doi: 10.2337/diab.16.1.1. [DOI] [PubMed] [Google Scholar]
  18. Lauritzen T., Frost-Larsen K., Larsen H. W., Deckert T. Effect of 1 year of near-normal blood glucose levels on retinopathy in insulin-dependent diabetics. Lancet. 1983 Jan 29;1(8318):200–204. doi: 10.1016/s0140-6736(83)92585-0. [DOI] [PubMed] [Google Scholar]
  19. Murphy M. E., Johnson P. C. Possible contribution of basement membrane to the structural rigidity of blood capillaries. Microvasc Res. 1975 Mar;9(2):242–245. doi: 10.1016/0026-2862(75)90084-9. [DOI] [PubMed] [Google Scholar]
  20. Parving H. H., Viberti G. C., Keen H., Christiansen J. S., Lassen N. A. Hemodynamic factors in the genesis of diabetic microangiopathy. Metabolism. 1983 Sep;32(9):943–949. doi: 10.1016/0026-0495(83)90210-x. [DOI] [PubMed] [Google Scholar]
  21. Riva C. E., Petrig B. Blue field entoptic phenomenon and blood velocity in the retinal capillaries. J Opt Soc Am. 1980 Oct;70(10):1234–1238. doi: 10.1364/josa.70.001234. [DOI] [PubMed] [Google Scholar]
  22. Riva C. E., Sinclair S. H., Grunwald J. E. Autoregulation of retinal circulation in response to decrease of perfusion pressure. Invest Ophthalmol Vis Sci. 1981 Jul;21(1 Pt 1):34–38. [PubMed] [Google Scholar]
  23. Schmid-Schönbein G. W., Skalak R., Usami S., Chien S. Cell distribution in capillary networks. Microvasc Res. 1980 Jan;19(1):18–44. doi: 10.1016/0026-2862(80)90082-5. [DOI] [PubMed] [Google Scholar]
  24. Sinclair S. H., Azar-Cavanagh M., Soper K. A., Tuma R. F., Mayrovitz H. N. Investigation of the source of the blue field entoptic phenomenon. Invest Ophthalmol Vis Sci. 1989 Apr;30(4):668–673. [PubMed] [Google Scholar]
  25. Sinclair S. H. Macular retinal capillary hemodynamics in diabetic patients. Ophthalmology. 1991 Oct;98(10):1580–1586. doi: 10.1016/s0161-6420(91)32084-0. [DOI] [PubMed] [Google Scholar]
  26. Sponsel W. E., DePaul K. L., Zetlan S. R. Retinal hemodynamic effects of carbon dioxide, hyperoxia, and mild hypoxia. Invest Ophthalmol Vis Sci. 1992 May;33(6):1864–1869. [PubMed] [Google Scholar]
  27. Zatz R., Brenner B. M. Pathogenesis of diabetic microangiopathy. The hemodynamic view. Am J Med. 1986 Mar;80(3):443–453. doi: 10.1016/0002-9343(86)90719-9. [DOI] [PubMed] [Google Scholar]

Articles from The British Journal of Ophthalmology are provided here courtesy of BMJ Publishing Group

RESOURCES