Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jan 1;97(1):47–53. doi: 10.1172/JCI118405

Functional magnetic resonance imaging reveals brain regions mediating the response to resistive expiratory loads in humans.

D Gozal 1, O Omidvar 1, K A Kirlew 1, G M Hathout 1, R B Lufkin 1, R M Harper 1
PMCID: PMC507061  PMID: 8550849

Abstract

Obstructive lung disease is the most common form of respiratory disturbance. However, the location of brain structures underlying the ventilatory response to resistive expiratory loads is unknown in humans. To study this issue, midsagittal magnetic resonance images were acquired in eight healthy volunteers before and after application of a moderate resistive expiratory load (30 cmH2O/liter/s), using functional magnetic resonance imaging (fMRI) strategies (1.5-T magnetic resonance; repetition time: 72 ms; echo time: 45 ms; flip angle: 30 degrees; field of view: 26 cm; slice thickness: 5 mm; 128 x 256 x 1 number of excitations). Digital image subtractions and region of interest analyses revealed significant increases in fMRI signal intensity in discrete areas of the ventral medulla, ventral and dorsal pontomedullary structures, basal forebrain, and cerebellum. Upon load withdrawal, a rapid fMRI signal off-transient occurred in all activated sites. Application of an identical load immediately after recovery from the initial stimulus resulted in smaller signal increases (P < 0.02). Prolongation of load duration was associated with progressive fMRI signal decrease across activated regions. In three additional subjects, the threshold for significant MRI signal increases was established at expiratory loads > or = 15 cmH2O/liter/s and was dose dependent with increasing loads. We conclude that resistive expiratory loads > or = 15 cmH2O/liter/s elicit regional activation of discrete brain locations in humans.

Full Text

The Full Text of this article is available as a PDF (276.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asanuma C., Thach W. T., Jones E. G. Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res. 1983 May;286(3):237–265. doi: 10.1016/0165-0173(83)90015-2. [DOI] [PubMed] [Google Scholar]
  2. Barrière J. R., Delpierre S., Del Volgo M. J., Jammes Y. Comparisons among external resistive loading, drug-induced bronchospasm, and dense gas breathing in cats: roles of vagal and spinal afferents. Lung. 1993;171(3):125–136. doi: 10.1007/BF00183942. [DOI] [PubMed] [Google Scholar]
  3. Chonan T., Altose M. D., Cherniack N. S. Effects of expiratory resistive loading on the sensation of dyspnea. J Appl Physiol (1985) 1990 Jul;69(1):91–95. doi: 10.1152/jappl.1990.69.1.91. [DOI] [PubMed] [Google Scholar]
  4. Connelly A., Jackson G. D., Frackowiak R. S., Belliveau J. W., Vargha-Khadem F., Gadian D. G. Functional mapping of activated human primary cortex with a clinical MR imaging system. Radiology. 1993 Jul;188(1):125–130. doi: 10.1148/radiology.188.1.8511285. [DOI] [PubMed] [Google Scholar]
  5. Davenport P. W., Friedman W. A., Thompson F. J., Franzén O. Respiratory-related cortical potentials evoked by inspiratory occlusion in humans. J Appl Physiol (1985) 1986 Jun;60(6):1843–1848. doi: 10.1152/jappl.1986.60.6.1843. [DOI] [PubMed] [Google Scholar]
  6. DeYoe E. A., Bandettini P., Neitz J., Miller D., Winans P. Functional magnetic resonance imaging (FMRI) of the human brain. J Neurosci Methods. 1994 Oct;54(2):171–187. doi: 10.1016/0165-0270(94)90191-0. [DOI] [PubMed] [Google Scholar]
  7. Fox P. T., Mintun M. A., Raichle M. E., Miezin F. M., Allman J. M., Van Essen D. C. Mapping human visual cortex with positron emission tomography. 1986 Oct 30-Nov 5Nature. 323(6091):806–809. doi: 10.1038/323806a0. [DOI] [PubMed] [Google Scholar]
  8. Fox P. T., Raichle M. E. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A. 1986 Feb;83(4):1140–1144. doi: 10.1073/pnas.83.4.1140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fox P. T., Raichle M. E., Mintun M. A., Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 1988 Jul 22;241(4864):462–464. doi: 10.1126/science.3260686. [DOI] [PubMed] [Google Scholar]
  10. Frahm J., Bruhn H., Merboldt K. D., Hänicke W. Dynamic MR imaging of human brain oxygenation during rest and photic stimulation. J Magn Reson Imaging. 1992 Sep-Oct;2(5):501–505. doi: 10.1002/jmri.1880020505. [DOI] [PubMed] [Google Scholar]
  11. Frahm J., Merboldt K. D., Hänicke W., Kleinschmidt A., Boecker H. Brain or vein--oxygenation or flow? On signal physiology in functional MRI of human brain activation. NMR Biomed. 1994 Mar;7(1-2):45–53. doi: 10.1002/nbm.1940070108. [DOI] [PubMed] [Google Scholar]
  12. Fried I., Gozal D., Kirlew K. A., Hathout G. M., Tang H., Zhang J., Harper R. M. Dynamic magnetic resonance imaging of human Rolandic cortex. Neuroreport. 1994 Aug 15;5(13):1593–1596. doi: 10.1097/00001756-199408150-00013. [DOI] [PubMed] [Google Scholar]
  13. Gozal D., Hathout G. M., Kirlew K. A., Tang H., Woo M. S., Zhang J., Lufkin R. B., Harper R. M. Localization of putative neural respiratory regions in the human by functional magnetic resonance imaging. J Appl Physiol (1985) 1994 May;76(5):2076–2083. doi: 10.1152/jappl.1994.76.5.2076. [DOI] [PubMed] [Google Scholar]
  14. Gozal D., Omidvar O., Kirlew K. A., Hathout G. M., Hamilton R., Lufkin R. B., Harper R. M. Identification of human brain regions underlying responses to resistive inspiratory loading with functional magnetic resonance imaging. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6607–6611. doi: 10.1073/pnas.92.14.6607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hathout G. M., Kirlew K. A., So G. J., Hamilton D. R., Zhang J. X., Sinha U., Sinha S., Sayre J., Gozal D., Harper R. M. MR imaging signal response to sustained stimulation in human visual cortex. J Magn Reson Imaging. 1994 Jul-Aug;4(4):537–543. doi: 10.1002/jmri.1880040405. [DOI] [PubMed] [Google Scholar]
  16. Haxhiu M. A., van Lunteren E., Cherniack N. S. Responses of upper-airway dilating muscles and diaphragm activity to end-expiratory pressure loading in anesthetized dogs. Respiration. 1989;56(1-2):1–10. doi: 10.1159/000195771. [DOI] [PubMed] [Google Scholar]
  17. Hoshi Y., Tamura M. Dynamic multichannel near-infrared optical imaging of human brain activity. J Appl Physiol (1985) 1993 Oct;75(4):1842–1846. doi: 10.1152/jappl.1993.75.4.1842. [DOI] [PubMed] [Google Scholar]
  18. Huang Q., Zhou D., St John W. M. Cerebellar control of expiratory activities of medullary neurons and spinal nerves. J Appl Physiol (1985) 1993 Apr;74(4):1934–1940. doi: 10.1152/jappl.1993.74.4.1934. [DOI] [PubMed] [Google Scholar]
  19. Huang Q., Zhou D., St John W. M. Vestibular and cerebellar modulation of expiratory motor activities in the cat. J Physiol. 1991 May;436:385–404. doi: 10.1113/jphysiol.1991.sp018556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Isono S., Nishino T., Sugimori K., Mizuguchi T. Respiratory effects of expiratory flow-resistive loading in conscious and anesthetized humans. Anesth Analg. 1990 Jun;70(6):594–599. doi: 10.1213/00000539-199006000-00004. [DOI] [PubMed] [Google Scholar]
  21. Jenkins I. H., Brooks D. J., Nixon P. D., Frackowiak R. S., Passingham R. E. Motor sequence learning: a study with positron emission tomography. J Neurosci. 1994 Jun;14(6):3775–3790. doi: 10.1523/JNEUROSCI.14-06-03775.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kikuchi Y., Okabe S., Tamura G., Hida W., Homma M., Shirato K., Takishima T. Chemosensitivity and perception of dyspnea in patients with a history of near-fatal asthma. N Engl J Med. 1994 May 12;330(19):1329–1334. doi: 10.1056/NEJM199405123301901. [DOI] [PubMed] [Google Scholar]
  23. Kwong K. K., Belliveau J. W., Chesler D. A., Goldberg I. E., Weisskoff R. M., Poncelet B. P., Kennedy D. N., Hoppel B. E., Cohen M. S., Turner R. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5675–5679. doi: 10.1073/pnas.89.12.5675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Leevers A. M., Simon P. M., Xi L., Dempsey J. A. Apnoea following normocapnic mechanical ventilation in awake mammals: a demonstration of control system inertia. J Physiol. 1993 Dec;472:749–768. doi: 10.1113/jphysiol.1993.sp019971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lucier G. E., Sessle B. J. Presynaptic excitability changes induced in the solitary tract endings of laryngeal primary afferents by stimulation of nucleus raphe magnus and locus coeruleus. Neurosci Lett. 1981 Nov 4;26(3):221–226. doi: 10.1016/0304-3940(81)90136-1. [DOI] [PubMed] [Google Scholar]
  26. McCarthy G., Blamire A. M., Rothman D. L., Gruetter R., Shulman R. G. Echo-planar magnetic resonance imaging studies of frontal cortex activation during word generation in humans. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4952–4956. doi: 10.1073/pnas.90.11.4952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McCrimmon D. R., Speck D. F., Feldman J. L. Role of the ventrolateral region of the nucleus of the tractus solitarius in processing respiratory afferent input from vagus and superior laryngeal nerves. Exp Brain Res. 1987;67(3):449–459. doi: 10.1007/BF00247278. [DOI] [PubMed] [Google Scholar]
  28. O'Donnell D. E., Sanii R., Younes M. External mechanical loading in conscious humans: role of upper airway mechanoreceptors. J Appl Physiol (1985) 1988 Aug;65(2):541–548. doi: 10.1152/jappl.1988.65.2.541. [DOI] [PubMed] [Google Scholar]
  29. Ogawa S., Lee T. M., Nayak A. S., Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med. 1990 Apr;14(1):68–78. doi: 10.1002/mrm.1910140108. [DOI] [PubMed] [Google Scholar]
  30. Ogawa S., Tank D. W., Menon R., Ellermann J. M., Kim S. G., Merkle H., Ugurbil K. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5951–5955. doi: 10.1073/pnas.89.13.5951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Perrin J., Crousillat J. The projection of vagal afferents on the cerebellar vermis of the cat. J Auton Nerv Syst. 1985 Jun;13(2):175–177. doi: 10.1016/0165-1838(85)90034-7. [DOI] [PubMed] [Google Scholar]
  32. Phelps M. E., Kuhl D. E., Mazziota J. C. Metabolic mapping of the brain's response to visual stimulation: studies in humans. Science. 1981 Mar 27;211(4489):1445–1448. doi: 10.1126/science.6970412. [DOI] [PubMed] [Google Scholar]
  33. Prichard J., Rothman D., Novotny E., Petroff O., Kuwabara T., Avison M., Howseman A., Hanstock C., Shulman R. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5829–5831. doi: 10.1073/pnas.88.13.5829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Puddy A., Giesbrecht G., Sanii R., Younes M. Mechanism of detection of resistive loads in conscious humans. J Appl Physiol (1985) 1992 Jun;72(6):2267–2270. doi: 10.1152/jappl.1992.72.6.2267. [DOI] [PubMed] [Google Scholar]
  35. Radna R. J., MacLean P. D. Vagal elicitation of respiratory-type and other unit responses in basal limbic structures of squirrel monkeys. Brain Res. 1981 May 25;213(1):45–61. doi: 10.1016/0006-8993(81)91247-6. [DOI] [PubMed] [Google Scholar]
  36. Ramsay S. C., Adams L., Murphy K., Corfield D. R., Grootoonk S., Bailey D. L., Frackowiak R. S., Guz A. Regional cerebral blood flow during volitional expiration in man: a comparison with volitional inspiration. J Physiol. 1993 Feb;461:85–101. doi: 10.1113/jphysiol.1993.sp019503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schad L. R., Trost U., Knopp M. V., Müller E., Lorenz W. J. Motor cortex stimulation measured by magnetic resonance imaging on a standard 1.5 T clinical scanner. Magn Reson Imaging. 1993;11(4):461–464. doi: 10.1016/0730-725x(93)90464-o. [DOI] [PubMed] [Google Scholar]
  38. Shannon R., Saporta S., Lindsey B. G. Transmission of intercostal muscle proprioceptor afferent information to medullary respiratory areas. Exp Neurol. 1982 Oct;78(1):222–225. doi: 10.1016/0014-4886(82)90203-5. [DOI] [PubMed] [Google Scholar]
  39. Tong G., Robertson L. T., Brons J. Vagal and somatic representation by the climbing fiber system in lobule V of the cat cerebellum. Brain Res. 1991 Jun 21;552(1):58–66. doi: 10.1016/0006-8993(91)90660-n. [DOI] [PubMed] [Google Scholar]
  40. Tootell R. B., Reppas J. B., Kwong K. K., Malach R., Born R. T., Brady T. J., Rosen B. R., Belliveau J. W. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci. 1995 Apr;15(4):3215–3230. doi: 10.1523/JNEUROSCI.15-04-03215.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Turcotte H., Tahan M., Leblanc P., Boulet L. P. Perception of acute or progressive resistive loads in normal and asthmatic subjects. Respiration. 1993;60(4):203–211. doi: 10.1159/000196200. [DOI] [PubMed] [Google Scholar]
  42. Turner R., Le Bihan D., Moonen C. T., Despres D., Frank J. Echo-planar time course MRI of cat brain oxygenation changes. Magn Reson Med. 1991 Nov;22(1):159–166. doi: 10.1002/mrm.1910220117. [DOI] [PubMed] [Google Scholar]
  43. Xu F., Frazier D. T. Cerebellar role in the load-compensating response of expiratory muscle. J Appl Physiol (1985) 1994 Sep;77(3):1232–1238. doi: 10.1152/jappl.1994.77.3.1232. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES