Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Mar 15;97(6):1471–1477. doi: 10.1172/JCI118569

Tumor necrosis factor-alpha- and hyperglycemia-induced insulin resistance. Evidence for different mechanisms and different effects on insulin signaling.

G Kroder 1, B Bossenmaier 1, M Kellerer 1, E Capp 1, B Stoyanov 1, A Mühlhöfer 1, L Berti 1, H Horikoshi 1, A Ullrich 1, H Häring 1
PMCID: PMC507207  PMID: 8617880

Abstract

Inhibition of insulin receptor signaling by high glucose levels and by TNF-alpha was recently observed in different cell systems. The aim of the present study was to characterize the mechanism of TNF-alpha-induced insulin receptor inhibition and to compare the consequences of TNF-alpha- and hyperglycemia-induced insulin receptor inhibition for signal transduction downstream from the IR. TNF-alpha (0.5-10 nM) and high glucose (25 mM) showed similar rapid kinetics of inhibition (5-10 min, > 50%) of insulin receptor autophosphorylation in NIH3T3 cells overexpressing the human insulin receptor. TNF-alpha effects were completely prevented by the phosphotyrosine phosphatase (PTPase) inhibitors orthovanadate (40 microM) and phenylarsenoxide (35 microM), but they were unaffected by the protein kinase C (PKC) inhibitor H7 (0.1 mM), the phosphatidylinositol-3 kinase inhibitor wortmannin (5 microM), and the thiazolidindione troglitazone (CS045) (2 microgram/ml). In contrast, glucose effects were prevented by PKC inhibitors and CS045 but unaffected by PTPase inhibitors and wortmannin. To assess effects on downstream signaling, tyrosine phosphorylation of the following substrate proteins of the insulin receptor was determined: insulin receptor substrate-1, the coupling protein Shc, focal adhesion kinase (FAK125), and unidentified proteins of 130 kD, 60 kD. Hyperglycemia (25 mM glucose) and TNF-alpha showed analogous (> 50% inhibition) effects on tyrosine phosphorylation of insulin receptor substrate-1, Shc, p60, and p44, whereas opposite effects were observed for tyrosine phosphorylation of FAK125, which is dephosphorylated after insulin stimulation. Whereas TNF-alpha did not prevent insulin-induced dephosphorylation of FAK125, 25 mM glucose blocked this insulin effect completely. In summary, the data suggest that TNF-alpha and high glucose modulate insulin receptor-signaling through different mechanisms: (a) TNF-alpha modulates insulin receptor signals by PTPase activation, whereas glucose acts through activation of PKC. (b) Differences in modulation of the insulin receptor signaling cascade are found with TNF-alpha and high glucose: Hyperglycemia-induced insulin receptor inhibition blocks both insulin receptor-dependent tyrosine phosphorylation and dephosphorylation of insulin receptor substrate proteins. In contrast, TNF-alpha blocks only substrate phosphorylation, and it does not block insulin-induced substrate dephosphorylation. The different effects on FAK125 regulation allow the speculation that long-term cell effects related to FAK125 activity might develop in a different way in hyperglycemia- and TNF-alpha-dependent insulin resistance.

Full Text

The Full Text of this article is available as a PDF (335.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arner P., Pollare T., Lithell H., Livingston J. N. Defective insulin receptor tyrosine kinase in human skeletal muscle in obesity and type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1987 Jun;30(6):437–440. doi: 10.1007/BF00292549. [DOI] [PubMed] [Google Scholar]
  2. Beck-Nielsen H., Groop L. C. Metabolic and genetic characterization of prediabetic states. Sequence of events leading to non-insulin-dependent diabetes mellitus. J Clin Invest. 1994 Nov;94(5):1714–1721. doi: 10.1172/JCI117518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berti L., Mosthaf L., Kroder G., Kellerer M., Tippmer S., Mushack J., Seffer E., Seedorf K., Häring H. Glucose-induced translocation of protein kinase C isoforms in rat-1 fibroblasts is paralleled by inhibition of the insulin receptor tyrosine kinase. J Biol Chem. 1994 Feb 4;269(5):3381–3386. [PubMed] [Google Scholar]
  4. Calalb M. B., Polte T. R., Hanks S. K. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol. 1995 Feb;15(2):954–963. doi: 10.1128/mcb.15.2.954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caro J. F., Sinha M. K., Raju S. M., Ittoop O., Pories W. J., Flickinger E. G., Meelheim D., Dohm G. L. Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes. J Clin Invest. 1987 May;79(5):1330–1337. doi: 10.1172/JCI112958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carpenter C. L., Auger K. R., Duckworth B. C., Hou W. M., Schaffhausen B., Cantley L. C. A tightly associated serine/threonine protein kinase regulates phosphoinositide 3-kinase activity. Mol Cell Biol. 1993 Mar;13(3):1657–1665. doi: 10.1128/mcb.13.3.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen H. C., Guan J. L. Association of focal adhesion kinase with its potential substrate phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10148–10152. doi: 10.1073/pnas.91.21.10148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cox N. J., Epstein P. A., Spielman R. S. Linkage studies on NIDDM and the insulin and insulin-receptor genes. Diabetes. 1989 May;38(5):653–658. doi: 10.2337/diab.38.5.653. [DOI] [PubMed] [Google Scholar]
  9. DeFronzo R. A., Bonadonna R. C., Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care. 1992 Mar;15(3):318–368. doi: 10.2337/diacare.15.3.318. [DOI] [PubMed] [Google Scholar]
  10. Dhand R., Hiles I., Panayotou G., Roche S., Fry M. J., Gout I., Totty N. F., Truong O., Vicendo P., Yonezawa K. PI 3-kinase is a dual specificity enzyme: autoregulation by an intrinsic protein-serine kinase activity. EMBO J. 1994 Feb 1;13(3):522–533. doi: 10.1002/j.1460-2075.1994.tb06290.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Feinstein R., Kanety H., Papa M. Z., Lunenfeld B., Karasik A. Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J Biol Chem. 1993 Dec 15;268(35):26055–26058. [PubMed] [Google Scholar]
  12. Gates R. E., King L. E., Jr, Hanks S. K., Nanney L. B. Potential role for focal adhesion kinase in migrating and proliferating keratinocytes near epidermal wounds and in culture. Cell Growth Differ. 1994 Aug;5(8):891–899. [PubMed] [Google Scholar]
  13. Hotamisligil G. S., Budavari A., Murray D., Spiegelman B. M. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha. J Clin Invest. 1994 Oct;94(4):1543–1549. doi: 10.1172/JCI117495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hotamisligil G. S., Murray D. L., Choy L. N., Spiegelman B. M. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4854–4858. doi: 10.1073/pnas.91.11.4854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hotamisligil G. S., Shargill N. S., Spiegelman B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993 Jan 1;259(5091):87–91. doi: 10.1126/science.7678183. [DOI] [PubMed] [Google Scholar]
  16. Häring H. U., Mehnert H. Pathogenesis of type 2 (non-insulin-dependent) diabetes mellitus: candidates for a signal transmitter defect causing insulin resistance of the skeletal muscle. Diabetologia. 1993 Mar;36(3):176–182. doi: 10.1007/BF00399946. [DOI] [PubMed] [Google Scholar]
  17. Häring H., Obermaier B., Ermel B., Su Z., Mushack J., Rattenhuber E., Hölzl J., Kirsch D., Machicao F., Herberg L. Insulin receptor kinase defects as a possible cause of cellular insulin resistance. Diabete Metab. 1987 Jul;13(3 Pt 2):284–293. [PubMed] [Google Scholar]
  18. Ide R., Maegawa H., Kikkawa R., Shigeta Y., Kashiwagi A. High glucose condition activates protein tyrosine phosphatases and deactivates insulin receptor function in insulin-sensitive rat 1 fibroblasts. Biochem Biophys Res Commun. 1994 May 30;201(1):71–77. doi: 10.1006/bbrc.1994.1670. [DOI] [PubMed] [Google Scholar]
  19. Kellerer M., Kroder G., Tippmer S., Berti L., Kiehn R., Mosthaf L., Häring H. Troglitazone prevents glucose-induced insulin resistance of insulin receptor in rat-1 fibroblasts. Diabetes. 1994 Mar;43(3):447–453. doi: 10.2337/diab.43.3.447. [DOI] [PubMed] [Google Scholar]
  20. Kellerer M., Obermaier-Kusser B., Pröfrock A., Schleicher E., Seffer E., Mushack J., Ermel B., Häring H. U. Insulin activates GTP binding to a 40 kDa protein in fat cells. Biochem J. 1991 May 15;276(Pt 1):103–108. doi: 10.1042/bj2760103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Knight J. B., Yamauchi K., Pessin J. E. Divergent insulin and platelet-derived growth factor regulation of focal adhesion kinase (pp125FAK) tyrosine phosphorylation, and rearrangement of actin stress fibers. J Biol Chem. 1995 Apr 28;270(17):10199–10203. doi: 10.1074/jbc.270.17.10199. [DOI] [PubMed] [Google Scholar]
  22. Lam K., Carpenter C. L., Ruderman N. B., Friel J. C., Kelly K. L. The phosphatidylinositol 3-kinase serine kinase phosphorylates IRS-1. Stimulation by insulin and inhibition by Wortmannin. J Biol Chem. 1994 Aug 12;269(32):20648–20652. [PubMed] [Google Scholar]
  23. Maddux B. A., Sbraccia P., Kumakura S., Sasson S., Youngren J., Fisher A., Spencer S., Grupe A., Henzel W., Stewart T. A. Membrane glycoprotein PC-1 and insulin resistance in non-insulin-dependent diabetes mellitus. Nature. 1995 Feb 2;373(6513):448–451. doi: 10.1038/373448a0. [DOI] [PubMed] [Google Scholar]
  24. Maegawa H., Shigeta Y., Egawa K., Kobayashi M. Impaired autophosphorylation of insulin receptors from abdominal skeletal muscles in nonobese subjects with NIDDM. Diabetes. 1991 Jul;40(7):815–819. doi: 10.2337/diab.40.7.815. [DOI] [PubMed] [Google Scholar]
  25. McClain D. A., Maegawa H., Levy J., Huecksteadt T., Dull T. J., Lee J., Ullrich A., Olefsky J. M. Properties of a human insulin receptor with a COOH-terminal truncation. I. Insulin binding, autophosphorylation, and endocytosis. J Biol Chem. 1988 Jun 25;263(18):8904–8911. [PubMed] [Google Scholar]
  26. Müller H. K., Kellerer M., Ermel B., Mühlhöfer A., Obermaier-Kusser B., Vogt B., Häring H. U. Prevention by protein kinase C inhibitors of glucose-induced insulin-receptor tyrosine kinase resistance in rat fat cells. Diabetes. 1991 Nov;40(11):1440–1448. doi: 10.2337/diab.40.11.1440. [DOI] [PubMed] [Google Scholar]
  27. Nolan J. J., Freidenberg G., Henry R., Reichart D., Olefsky J. M. Role of human skeletal muscle insulin receptor kinase in the in vivo insulin resistance of noninsulin-dependent diabetes mellitus and obesity. J Clin Endocrinol Metab. 1994 Feb;78(2):471–477. doi: 10.1210/jcem.78.2.8106637. [DOI] [PubMed] [Google Scholar]
  28. Nyomba B. L., Ossowski V. M., Bogardus C., Mott D. M. Insulin-sensitive tyrosine kinase: relationship with in vivo insulin action in humans. Am J Physiol. 1990 Jun;258(6 Pt 1):E964–E974. doi: 10.1152/ajpendo.1990.258.6.E964. [DOI] [PubMed] [Google Scholar]
  29. Obermaier-Kusser B., White M. F., Pongratz D. E., Su Z., Ermel B., Muhlbacher C., Haring H. U. A defective intramolecular autoactivation cascade may cause the reduced kinase activity of the skeletal muscle insulin receptor from patients with non-insulin-dependent diabetes mellitus. J Biol Chem. 1989 Jun 5;264(16):9497–9504. [PubMed] [Google Scholar]
  30. Pillay T. S., Sasaoka T., Olefsky J. M. Insulin stimulates the tyrosine dephosphorylation of pp125 focal adhesion kinase. J Biol Chem. 1995 Jan 20;270(3):991–994. doi: 10.1074/jbc.270.3.991. [DOI] [PubMed] [Google Scholar]
  31. Polte T. R., Naftilan A. J., Hanks S. K. Focal adhesion kinase is abundant in developing blood vessels and elevation of its phosphotyrosine content in vascular smooth muscle cells is a rapid response to angiotensin II. J Cell Biochem. 1994 May;55(1):106–119. doi: 10.1002/jcb.240550113. [DOI] [PubMed] [Google Scholar]
  32. Schlaepfer D. D., Hanks S. K., Hunter T., van der Geer P. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature. 1994 Dec 22;372(6508):786–791. doi: 10.1038/372786a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES