Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 May 15;97(10):2174–2182. doi: 10.1172/JCI118658

Chymase in exocytosed rat mast cell granules effectively proteolyzes apolipoprotein AI-containing lipoproteins, so reducing the cholesterol efflux-inducing ability of serum and aortic intimal fluid.

L Lindstedt 1, M Lee 1, G R Castro 1, J C Fruchart 1, P T Kovanen 1
PMCID: PMC507296  PMID: 8636396

Abstract

Degranulated mast cells are present in human fatty streaks. Chymase in granules released from degranulated rat serosal mast cells, i.e., in granule remnants, proteolyzes human high density lipoprotein3 (HDL3), and so reduces its ability to induce cholesterol efflux from macrophage foam cells in vitro. In this study we found that remnant chymase, by proteolyzing human serum and human aortic intimal fluid, prevents these two physiologic fluids from effectively inducing cholesterol efflux from cultured macrophage foam cells. Inhibition was strongest when remnants were added to apolipoprotein AI (apoAI)-containing lipoproteins; the remnants had no effect on the weaker efflux produced by apoAI-deficient serum. Western blot analysis showed that granule remnants degrade apoAI in serum and in internal fluid. When released from remnants, chymase lost its ability to proteolyze HDL3 in the presence of serum. Thus, remnant chymase (but not isolated chymase) was able to resist the natural protease inhibitors present in serum and in intimal fluid. The results imply participation of exocytosed mast cell granules in foam cell formation in atherogenesis.

Full Text

The Full Text of this article is available as a PDF (243.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asztalos B. F., Sloop C. H., Wong L., Roheim P. S. Comparison of apo A-I-containing subpopulations of dog plasma and prenodal peripheral lymph: evidence for alteration in subpopulations in the interstitial space. Biochim Biophys Acta. 1993 Sep 8;1169(3):301–304. doi: 10.1016/0005-2760(93)90254-7. [DOI] [PubMed] [Google Scholar]
  2. Badimon J. J., Badimon L., Fuster V. Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit. J Clin Invest. 1990 Apr;85(4):1234–1241. doi: 10.1172/JCI114558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barbaras R., Puchois P., Fruchart J. C., Ailhaud G. Cholesterol efflux from cultured adipose cells is mediated by LpAI particles but not by LpAI:AII particles. Biochem Biophys Res Commun. 1987 Jan 15;142(1):63–69. doi: 10.1016/0006-291x(87)90451-7. [DOI] [PubMed] [Google Scholar]
  4. Basu S. K., Goldstein J. L., Anderson G. W., Brown M. S. Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3178–3182. doi: 10.1073/pnas.73.9.3178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bilheimer D. W., Eisenberg S., Levy R. I. The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations. Biochim Biophys Acta. 1972 Feb 21;260(2):212–221. doi: 10.1016/0005-2760(72)90034-3. [DOI] [PubMed] [Google Scholar]
  6. Brown M. S., Dana S. E., Goldstein J. L. Receptor-dependent hydrolysis of cholesteryl esters contained in plasma low density lipoprotein. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2925–2929. doi: 10.1073/pnas.72.8.2925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown M. S., Goldstein J. L. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem. 1983;52:223–261. doi: 10.1146/annurev.bi.52.070183.001255. [DOI] [PubMed] [Google Scholar]
  8. Castro G. R., Fielding C. J. Early incorporation of cell-derived cholesterol into pre-beta-migrating high-density lipoprotein. Biochemistry. 1988 Jan 12;27(1):25–29. doi: 10.1021/bi00401a005. [DOI] [PubMed] [Google Scholar]
  9. Fielding C. J., Fielding P. E. Molecular physiology of reverse cholesterol transport. J Lipid Res. 1995 Feb;36(2):211–228. [PubMed] [Google Scholar]
  10. Fogelman A. M., Van Lenten B. J., Warden C., Haberland M. E., Edwards P. A. Macrophage lipoprotein receptors. J Cell Sci Suppl. 1988;9:135–149. doi: 10.1242/jcs.1988.supplement_9.7. [DOI] [PubMed] [Google Scholar]
  11. Forte T. M., McCall M. R. The role of apolipoprotein A-I-containing lipoproteins in atherosclerosis. Curr Opin Lipidol. 1994 Oct;5(5):354–364. doi: 10.1097/00041433-199410000-00007. [DOI] [PubMed] [Google Scholar]
  12. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ho Y. K., Brown M. S., Goldstein J. L. Hydrolysis and excretion of cytoplasmic cholesteryl esters by macrophages: stimulation by high density lipoprotein and other agents. J Lipid Res. 1980 May;21(4):391–398. [PubMed] [Google Scholar]
  14. Hoff H. F., O'Neil J., Pepin J. M., Cole T. B. Macrophage uptake of cholesterol-containing particles derived from LDL and isolated from atherosclerotic lesions. Eur Heart J. 1990 Aug;11 (Suppl E):105–115. doi: 10.1093/eurheartj/11.suppl_e.105. [DOI] [PubMed] [Google Scholar]
  15. Johnson W. J., Kilsdonk E. P., van Tol A., Phillips M. C., Rothblat G. H. Cholesterol efflux from cells to immunopurified subfractions of human high density lipoprotein: LP-AI and LP-AI/AII. J Lipid Res. 1991 Dec;32(12):1993–2000. [PubMed] [Google Scholar]
  16. Johnson W. J., Mahlberg F. H., Rothblat G. H., Phillips M. C. Cholesterol transport between cells and high-density lipoproteins. Biochim Biophys Acta. 1991 Oct 1;1085(3):273–298. doi: 10.1016/0005-2760(91)90132-2. [DOI] [PubMed] [Google Scholar]
  17. Jonasson L., Holm J., Skalli O., Bondjers G., Hansson G. K. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis. 1986 Mar-Apr;6(2):131–138. doi: 10.1161/01.atv.6.2.131. [DOI] [PubMed] [Google Scholar]
  18. Kaartinen M., Penttilä A., Kovanen P. T. Accumulation of activated mast cells in the shoulder region of human coronary atheroma, the predilection site of atheromatous rupture. Circulation. 1994 Oct;90(4):1669–1678. doi: 10.1161/01.cir.90.4.1669. [DOI] [PubMed] [Google Scholar]
  19. Kaartinen M., Penttilä A., Kovanen P. T. Extracellular mast cell granules carry apolipoprotein B-100-containing lipoproteins into phagocytes in human arterial intima. Functional coupling of exocytosis and phagodytosis in neighboring cells. Arterioscler Thromb Vasc Biol. 1995 Nov;15(11):2047–2054. doi: 10.1161/01.atv.15.11.2047. [DOI] [PubMed] [Google Scholar]
  20. Kaartinen M., Penttilä A., Kovanen P. T. Mast cells of two types differing in neutral protease composition in the human aortic intima. Demonstration of tryptase- and tryptase/chymase-containing mast cells in normal intimas, fatty streaks, and the shoulder region of atheromas. Arterioscler Thromb. 1994 Jun;14(6):966–972. doi: 10.1161/01.atv.14.6.966. [DOI] [PubMed] [Google Scholar]
  21. Kawano M., Miida T., Fielding C. J., Fielding P. E. Quantitation of pre beta-HDL-dependent and nonspecific components of the total efflux of cellular cholesterol and phospholipid. Biochemistry. 1993 May 18;32(19):5025–5028. doi: 10.1021/bi00070a008. [DOI] [PubMed] [Google Scholar]
  22. Kido H., Fukusen N., Katunuma N. Chymotrypsin- and trypsin-type serine proteases in rat mast cells: properties and functions. Arch Biochem Biophys. 1985 Jun;239(2):436–443. doi: 10.1016/0003-9861(85)90709-x. [DOI] [PubMed] [Google Scholar]
  23. Kokkonen J. O., Vartiainen M., Kovanen P. T. Low density lipoprotein degradation by secretory granules of rat mast cells. Sequential degradation of apolipoprotein B by granule chymase and carboxypeptidase A. J Biol Chem. 1986 Dec 5;261(34):16067–16072. [PubMed] [Google Scholar]
  24. Kovanen P. T. Atheroma formation: defective control in the intimal round-trip of cholesterol. Eur Heart J. 1990 Aug;11 (Suppl E):238–246. doi: 10.1093/eurheartj/11.suppl_e.238. [DOI] [PubMed] [Google Scholar]
  25. Kovanen P. T. Mast cell granule-mediated uptake of low density lipoproteins by macrophages: a novel carrier mechanism leading to the formation of foam cells. Ann Med. 1991;23(5):551–559. doi: 10.3109/07853899109150517. [DOI] [PubMed] [Google Scholar]
  26. Kovanen P. T. The mast cell--a potential link between inflammation and cellular cholesterol deposition in atherogenesis. Eur Heart J. 1993 Dec;14 (Suppl K):105–117. [PubMed] [Google Scholar]
  27. Kunitake S. T., Chen G. C., Kung S. F., Schilling J. W., Hardman D. A., Kane J. P. Pre-beta high density lipoprotein. Unique disposition of apolipoprotein A-I increases susceptibility to proteolysis. Arteriosclerosis. 1990 Jan-Feb;10(1):25–30. doi: 10.1161/01.atv.10.1.25. [DOI] [PubMed] [Google Scholar]
  28. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  29. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  30. Lee M., Lindstedt L. K., Kovanen P. T. Mast cell-mediated inhibition of reverse cholesterol transport. Arterioscler Thromb. 1992 Nov;12(11):1329–1335. doi: 10.1161/01.atv.12.11.1329. [DOI] [PubMed] [Google Scholar]
  31. Lindstedt K. A., Kokkonen J. O., Kovanen P. T. Soluble heparin proteoglycans released from stimulated mast cells induce uptake of low density lipoproteins by macrophages via scavenger receptor-mediated phagocytosis. J Lipid Res. 1992 Jan;33(1):65–75. [PubMed] [Google Scholar]
  32. Lottenberg R., Minning-Wenz D., Boyle M. D. Capturing host plasmin(ogen): a common mechanism for invasive pathogens? Trends Microbiol. 1994 Jan;2(1):20–24. doi: 10.1016/0966-842x(94)90340-9. [DOI] [PubMed] [Google Scholar]
  33. Miller G. J., Miller N. E. Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. Lancet. 1975 Jan 4;1(7897):16–19. doi: 10.1016/s0140-6736(75)92376-4. [DOI] [PubMed] [Google Scholar]
  34. Mitchinson M. J., Ball R. Y. Macrophages and atherogenesis. Lancet. 1987 Jul 18;2(8551):146–148. doi: 10.1016/s0140-6736(87)92341-5. [DOI] [PubMed] [Google Scholar]
  35. Nolly H., Carretero O. A., Scicli A. G. Kallikrein release by vascular tissue. Am J Physiol. 1993 Oct;265(4 Pt 2):H1209–H1214. doi: 10.1152/ajpheart.1993.265.4.H1209. [DOI] [PubMed] [Google Scholar]
  36. Oram J. F., Mendez A. J., Slotte J. P., Johnson T. F. High density lipoprotein apolipoproteins mediate removal of sterol from intracellular pools but not from plasma membranes of cholesterol-loaded fibroblasts. Arterioscler Thromb. 1991 Mar-Apr;11(2):403–414. doi: 10.1161/01.atv.11.2.403. [DOI] [PubMed] [Google Scholar]
  37. Piha M., Lindstedt L., Kovanen P. T. Fusion of proteolyzed low-density lipoprotein in the fluid phase: a novel mechanism generating atherogenic lipoprotein particles. Biochemistry. 1995 Aug 15;34(32):10120–10129. doi: 10.1021/bi00032a004. [DOI] [PubMed] [Google Scholar]
  38. RADDING C. M., STEINBERG D. Studies on the synthesis and secretion of serum lipoproteins by rat liver slices. J Clin Invest. 1960 Oct;39:1560–1569. doi: 10.1172/JCI104177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Röhlich P., Anderson P., Uvnäs B. Electron microscope observations on compounds 48-80-induced degranulation in rat mast cells. Evidence for sequential exocytosis of storage granules. J Cell Biol. 1971 Nov;51(21):465–483. doi: 10.1083/jcb.51.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Saarinen J., Kalkkinen N., Welgus H. G., Kovanen P. T. Activation of human interstitial procollagenase through direct cleavage of the Leu83-Thr84 bond by mast cell chymase. J Biol Chem. 1994 Jul 8;269(27):18134–18140. [PubMed] [Google Scholar]
  41. Schechter N. M., Sprows J. L., Schoenberger O. L., Lazarus G. S., Cooperman B. S., Rubin H. Reaction of human skin chymotrypsin-like proteinase chymase with plasma proteinase inhibitors. J Biol Chem. 1989 Dec 15;264(35):21308–21315. [PubMed] [Google Scholar]
  42. Schwartz L. B., Austen K. F. Structure and function of the chemical mediators of mast cells. Prog Allergy. 1984;34:271–321. [PubMed] [Google Scholar]
  43. Seydewitz V., Staubesand J. Immunocytochemical demonstration of lysosomal matrix vesicles in the arterial wall of the rat. Histochemistry. 1988;88(3-6):463–467. doi: 10.1007/BF00570309. [DOI] [PubMed] [Google Scholar]
  44. Smith E. B., Staples E. M. Plasma protein concentrations in interstitial fluid from human aortas. Proc R Soc Lond B Biol Sci. 1982 Dec 22;217(1206):59–75. doi: 10.1098/rspb.1982.0094. [DOI] [PubMed] [Google Scholar]
  45. Smith E. B. Transport, interactions and retention of plasma proteins in the intima: the barrier function of the internal elastic lamina. Eur Heart J. 1990 Aug;11 (Suppl E):72–81. doi: 10.1093/eurheartj/11.suppl_e.72. [DOI] [PubMed] [Google Scholar]
  46. Tanaka K., Sueishi K. The coagulation and fibrinolysis systems and atherosclerosis. Lab Invest. 1993 Jul;69(1):5–18. [PubMed] [Google Scholar]
  47. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Woodbury R. G., Everitt M. T., Neurath H. Mast cell proteases. Methods Enzymol. 1981;80(Pt 100):588–609. doi: 10.1016/s0076-6879(81)80047-x. [DOI] [PubMed] [Google Scholar]
  49. de la Llera Moya M., Atger V., Paul J. L., Fournier N., Moatti N., Giral P., Friday K. E., Rothblat G. A cell culture system for screening human serum for ability to promote cellular cholesterol efflux. Relations between serum components and efflux, esterification, and transfer. Arterioscler Thromb. 1994 Jul;14(7):1056–1065. doi: 10.1161/01.atv.14.7.1056. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES