Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jun 15;97(12):2883–2890. doi: 10.1172/JCI118746

Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy.

M Mizutani 1, T S Kern 1, M Lorenzi 1
PMCID: PMC507384  PMID: 8675702

Abstract

To reconstruct the mechanisms for the vasoobliteration that transforms diabetic retinopathy into an ischemic retinopathy, we compared the occurrence of cell death in situ in retinal microvessels of diabetic and nondiabetic individuals. Trypsin digests and sections prepared from the retinas of seven patients (age 67 +/- 7 yr) with .9 +/- 4 yr of diabetes and eight age- and sex-matched nondiabetic controls were studied with the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) reaction which detects preferentially apoptotic DNA fragmentation. The count of total TUNEL+ nuclei was significantly greater in the microvessels of diabetic (13 +/- 12 per one-sixth of retina) than control subjects (1.3 +/- 1.4, P = 0.0016), as were the counts of TUNEL+ pericytes and endothelial cells (P < 0.006). The neural retinas from both diabetic and nondiabetic subjects were uniformly TUNEL-. Retinal microvessels of rats with short duration of experimental diabetes or galactosemia and absent or minimal morphological changes of retinopathy, showed TUNEL+ pericytes and endothelial cells, which were absent in control rats. These findings indicate that (a) diabetes and galactosemia lead to accelerated death in situ of both retinal pericytes and endothelial cells; (b) the event is specific for vascular cells; (c) it precedes histological evidence of retinopathy; and (d) it can be induced by isolated hyperhexosemia. A cycle of accelerated death and renewal of endothelial cells may contribute to vascular architectural changes and, upon exhaustion of replicative life span, to capillary obliteration.

Full Text

The Full Text of this article is available as a PDF (401.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumgartner-Parzer S. M., Wagner L., Pettermann M., Grillari J., Gessl A., Waldhäusl W. High-glucose--triggered apoptosis in cultured endothelial cells. Diabetes. 1995 Nov;44(11):1323–1327. doi: 10.2337/diab.44.11.1323. [DOI] [PubMed] [Google Scholar]
  2. Boeri D., Cagliero E., Podestá F., Lorenzi M. Vascular wall von Willebrand factor in human diabetic retinopathy. Invest Ophthalmol Vis Sci. 1994 Feb;35(2):600–607. [PubMed] [Google Scholar]
  3. COGAN D. G., TOUSSAINT D., KUWABARA T. Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmol. 1961 Sep;66:366–378. doi: 10.1001/archopht.1961.00960010368014. [DOI] [PubMed] [Google Scholar]
  4. Di Leo M. A., Caputo S., Falsini B., Porciatti V., Greco A. V., Ghirlanda G. Presence and further development of retinal dysfunction after 3-year follow up in IDDM patients without angiographically documented vasculopathy. Diabetologia. 1994 Sep;37(9):911–916. doi: 10.1007/BF00400947. [DOI] [PubMed] [Google Scholar]
  5. Engerman R. L., Kern T. S. Experimental galactosemia produces diabetic-like retinopathy. Diabetes. 1984 Jan;33(1):97–100. doi: 10.2337/diab.33.1.97. [DOI] [PubMed] [Google Scholar]
  6. Engerman R. L., Kern T. S. Progression of incipient diabetic retinopathy during good glycemic control. Diabetes. 1987 Jul;36(7):808–812. doi: 10.2337/diab.36.7.808. [DOI] [PubMed] [Google Scholar]
  7. Engerman R. L., Kern T. S. Retinopathy in animal models of diabetes. Diabetes Metab Rev. 1995 Jul;11(2):109–120. doi: 10.1002/dmr.5610110203. [DOI] [PubMed] [Google Scholar]
  8. Engerman R. L., Pfaffenbach D., Davis M. D. Cell turnover of capillaries. Lab Invest. 1967 Dec;17(6):738–743. [PubMed] [Google Scholar]
  9. Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gold R., Schmied M., Giegerich G., Breitschopf H., Hartung H. P., Toyka K. V., Lassmann H. Differentiation between cellular apoptosis and necrosis by the combined use of in situ tailing and nick translation techniques. Lab Invest. 1994 Aug;71(2):219–225. [PubMed] [Google Scholar]
  11. Hockenbery D. Defining apoptosis. Am J Pathol. 1995 Jan;146(1):16–19. [PMC free article] [PubMed] [Google Scholar]
  12. Holopigian K., Seiple W., Lorenzo M., Carr R. A comparison of photopic and scotopic electroretinographic changes in early diabetic retinopathy. Invest Ophthalmol Vis Sci. 1992 Sep;33(10):2773–2780. [PubMed] [Google Scholar]
  13. Kern T. S., Engerman R. L. Comparison of retinal lesions in alloxan-diabetic rats and galactose-fed rats. Curr Eye Res. 1994 Dec;13(12):863–867. doi: 10.3109/02713689409015087. [DOI] [PubMed] [Google Scholar]
  14. Klein R., Klein B. E., Moss S. E., Davis M. D., DeMets D. L. The Wisconsin epidemiologic study of diabetic retinopathy. III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol. 1984 Apr;102(4):527–532. doi: 10.1001/archopht.1984.01040030405011. [DOI] [PubMed] [Google Scholar]
  15. Lin S. J., Hong C. Y., Chang M. S., Chiang B. N., Chien S. Increased aortic endothelial death and enhanced transendothelial macromolecular transport in streptozotocin-diabetic rats. Diabetologia. 1993 Oct;36(10):926–930. doi: 10.1007/BF02374474. [DOI] [PubMed] [Google Scholar]
  16. Lorenzi M., Cagliero E., Toledo S. Glucose toxicity for human endothelial cells in culture. Delayed replication, disturbed cell cycle, and accelerated death. Diabetes. 1985 Jul;34(7):621–627. doi: 10.2337/diab.34.7.621. [DOI] [PubMed] [Google Scholar]
  17. Lorenzi M., Montisano D. F., Toledo S., Barrieux A. High glucose induces DNA damage in cultured human endothelial cells. J Clin Invest. 1986 Jan;77(1):322–325. doi: 10.1172/JCI112295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Majno G., Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995 Jan;146(1):3–15. [PMC free article] [PubMed] [Google Scholar]
  19. Roth T., Podestá F., Stepp M. A., Boeri D., Lorenzi M. Integrin overexpression induced by high glucose and by human diabetes: potential pathway to cell dysfunction in diabetic microangiopathy. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9640–9644. doi: 10.1073/pnas.90.20.9640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schwartz S. M., Bennett M. R. Death by any other name. Am J Pathol. 1995 Aug;147(2):229–234. [PMC free article] [PubMed] [Google Scholar]
  21. Speiser P., Gittelsohn A. M., Patz A. Studies on diabetic retinopathy. 3. Influence of diabetes on intramural pericytes. Arch Ophthalmol. 1968 Sep;80(3):332–337. doi: 10.1001/archopht.1968.00980050334007. [DOI] [PubMed] [Google Scholar]
  22. Stefánsson E., Wilson C. A., Schoen T., Kuwabara T. Experimental ischemia induces cell mitosis in the adult rat retina. Invest Ophthalmol Vis Sci. 1988 Jul;29(7):1050–1055. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES