Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jul 1;98(1):43–49. doi: 10.1172/JCI118775

Acute regulation by insulin of phosphatidylinositol-3-kinase, Rad, Glut 4, and lipoprotein lipase mRNA levels in human muscle.

M Laville 1, D Auboeuf 1, Y Khalfallah 1, N Vega 1, J P Riou 1, H Vidal 1
PMCID: PMC507399  PMID: 8690802

Abstract

We have investigated the acute regulation by insulin of the mRNA levels of nine genes involved in insulin action, in muscle biopsies obtained before and at the end of a 3-h euglycemic hyperinsulinemic clamp. Using reverse transcription-competitive PCR, we have measured the mRNAs encoding the two insulin receptor variants, the insulin receptor substrate-1, the p85alpha subunit of phosphatidylinositol-3-kinase, Ras associated to diabetes (Rad), the glucose transporter Glut 4, glycogen synthase, 6-phosphofructo-l-kinase, lipoprotein lipase, and the hormone-sensitive lipase. Insulin infusion induced a significant increase in the mRNA level of Glut 4 (+56 +/- 13%), Rad (+96 +/- 25%), the p85alpha subunit of phosphatidylinositol-3-kinase (+92 +/- 18%) and a decrease in the lipoprotein lipase mRNA level (-49 +/- 5%), while the abundance of the other mRNAs was unaffected. The relative expression of the two insulin receptor variants was not modified. These results demonstrate an acute coordinated regulation by insulin of the expression of genes coding key proteins involved in its action in human skeletal muscle and suggest that Rad and the p85alpha regulatory subunit of phosphatidylinositol-3-kinase can be added to the list of the genes controlled by insulin.

Full Text

The Full Text of this article is available as a PDF (202.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araki E., Sun X. J., Haag B. L., 3rd, Chuang L. M., Zhang Y., Yang-Feng T. L., White M. F., Kahn C. R. Human skeletal muscle insulin receptor substrate-1. Characterization of the cDNA, gene, and chromosomal localization. Diabetes. 1993 Jul;42(7):1041–1054. doi: 10.2337/diab.42.7.1041. [DOI] [PubMed] [Google Scholar]
  2. Bouaboula M., Legoux P., Pességué B., Delpech B., Dumont X., Piechaczyk M., Casellas P., Shire D. Standardization of mRNA titration using a polymerase chain reaction method involving co-amplification with a multispecific internal control. J Biol Chem. 1992 Oct 25;267(30):21830–21838. [PubMed] [Google Scholar]
  3. Browner M. F., Nakano K., Bang A. G., Fletterick R. J. Human muscle glycogen synthase cDNA sequence: a negatively charged protein with an asymmetric charge distribution. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1443–1447. doi: 10.1073/pnas.86.5.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheatham B., Kahn C. R. Insulin action and the insulin signaling network. Endocr Rev. 1995 Apr;16(2):117–142. doi: 10.1210/edrv-16-2-117. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. DeFronzo R. A. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes. 1988 Jun;37(6):667–687. doi: 10.2337/diab.37.6.667. [DOI] [PubMed] [Google Scholar]
  7. Ebina Y., Ellis L., Jarnagin K., Edery M., Graf L., Clauser E., Ou J. H., Masiarz F., Kan Y. W., Goldfine I. D. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell. 1985 Apr;40(4):747–758. doi: 10.1016/0092-8674(85)90334-4. [DOI] [PubMed] [Google Scholar]
  8. Fukumoto H., Kayano T., Buse J. B., Edwards Y., Pilch P. F., Bell G. I., Seino S. Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-responsive tissues. J Biol Chem. 1989 May 15;264(14):7776–7779. [PubMed] [Google Scholar]
  9. Garvey W. T., Maianu L., Hancock J. A., Golichowski A. M., Baron A. Gene expression of GLUT4 in skeletal muscle from insulin-resistant patients with obesity, IGT, GDM, and NIDDM. Diabetes. 1992 Apr;41(4):465–475. doi: 10.2337/diab.41.4.465. [DOI] [PubMed] [Google Scholar]
  10. Gilliland G., Perrin S., Blanchard K., Bunn H. F. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2725–2729. doi: 10.1073/pnas.87.7.2725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Granner D., Pilkis S. The genes of hepatic glucose metabolism. J Biol Chem. 1990 Jun 25;265(18):10173–10176. [PubMed] [Google Scholar]
  12. Güssow D., Rein R., Ginjaar I., Hochstenbach F., Seemann G., Kottman A., Ploegh H. L. The human beta 2-microglobulin gene. Primary structure and definition of the transcriptional unit. J Immunol. 1987 Nov 1;139(9):3132–3138. [PubMed] [Google Scholar]
  13. Kiens B., Lithell H., Mikines K. J., Richter E. A. Effects of insulin and exercise on muscle lipoprotein lipase activity in man and its relation to insulin action. J Clin Invest. 1989 Oct;84(4):1124–1129. doi: 10.1172/JCI114275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lange A. J., Pilkis S. J. Sequence of human liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Nucleic Acids Res. 1990 Jun 25;18(12):3652–3652. doi: 10.1093/nar/18.12.3652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Langin D., Laurell H., Holst L. S., Belfrage P., Holm C. Gene organization and primary structure of human hormone-sensitive lipase: possible significance of a sequence homology with a lipase of Moraxella TA144, an antarctic bacterium. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4897–4901. doi: 10.1073/pnas.90.11.4897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laville M., Riou J. P., Bougneres P. F., Canivet B., Beylot M., Cohen R., Serusclat P., Dumontet C., Berthezene F., Mornex R. Glucose metabolism in experimental hyperthyroidism: intact in vivo sensitivity to insulin with abnormal binding and increased glucose turnover. J Clin Endocrinol Metab. 1984 Jun;58(6):960–965. doi: 10.1210/jcem-58-6-960. [DOI] [PubMed] [Google Scholar]
  17. Lemaigre F. P., Rousseau G. G. Transcriptional control of genes that regulate glycolysis and gluconeogenesis in adult liver. Biochem J. 1994 Oct 1;303(Pt 1):1–14. doi: 10.1042/bj3030001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mandarino L. J., Printz R. L., Cusi K. A., Kinchington P., O'Doherty R. M., Osawa H., Sewell C., Consoli A., Granner D. K., DeFronzo R. A. Regulation of hexokinase II and glycogen synthase mRNA, protein, and activity in human muscle. Am J Physiol. 1995 Oct;269(4 Pt 1):E701–E708. doi: 10.1152/ajpendo.1995.269.4.E701. [DOI] [PubMed] [Google Scholar]
  19. Nakajima H., Noguchi T., Yamasaki T., Kono N., Tanaka T., Tarui S. Cloning of human muscle phosphofructokinase cDNA. FEBS Lett. 1987 Oct 19;223(1):113–116. doi: 10.1016/0014-5793(87)80519-7. [DOI] [PubMed] [Google Scholar]
  20. Norgren S., Arner P., Luthman H. Insulin receptor ribonucleic acid levels and alternative splicing in human liver, muscle, and adipose tissue: tissue specificity and relation to insulin action. J Clin Endocrinol Metab. 1994 Mar;78(3):757–762. doi: 10.1210/jcem.78.3.7510306. [DOI] [PubMed] [Google Scholar]
  21. Norgren S., Zierath J., Wedell A., Wallberg-Henriksson H., Luthman H. Regulation of human insulin receptor RNA splicing in vivo. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1465–1469. doi: 10.1073/pnas.91.4.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. O'Brien R. M., Granner D. K. Regulation of gene expression by insulin. Biochem J. 1991 Sep 15;278(Pt 3):609–619. doi: 10.1042/bj2780609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. O'Brien R. M., Granner D. K. Why there is an IRS. J Clin Invest. 1995 Dec;96(6):2546–2546. doi: 10.1172/JCI118317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Reynet C., Kahn C. R. Rad: a member of the Ras family overexpressed in muscle of type II diabetic humans. Science. 1993 Nov 26;262(5138):1441–1444. doi: 10.1126/science.8248782. [DOI] [PubMed] [Google Scholar]
  25. Riond J., Mattei M. G., Kaghad M., Dumont X., Guillemot J. C., Le Fur G., Caput D., Ferrara P. Molecular cloning and chromosomal localization of a human peripheral-type benzodiazepine receptor. Eur J Biochem. 1991 Jan 30;195(2):305–311. doi: 10.1111/j.1432-1033.1991.tb15707.x. [DOI] [PubMed] [Google Scholar]
  26. Rizza R. A., Mandarino L. J., Gerich J. E. Dose-response characteristics for effects of insulin on production and utilization of glucose in man. Am J Physiol. 1981 Jun;240(6):E630–E639. doi: 10.1152/ajpendo.1981.240.6.E630. [DOI] [PubMed] [Google Scholar]
  27. Schalin-Jäntti C., Yki-Järvinen H., Koranyi L., Bourey R., Lindström J., Nikula-Ijäs P., Franssila-Kallunki A., Groop L. C. Effect of insulin on GLUT-4 mRNA and protein concentrations in skeletal muscle of patients with NIDDM and their first-degree relatives. Diabetologia. 1994 Apr;37(4):401–407. doi: 10.1007/BF00408478. [DOI] [PubMed] [Google Scholar]
  28. Sell S. M., Reese D., Ossowski V. M. Insulin-inducible changes in insulin receptor mRNA splice variants. J Biol Chem. 1994 Dec 9;269(49):30769–30772. [PubMed] [Google Scholar]
  29. Skolnik E. Y., Margolis B., Mohammadi M., Lowenstein E., Fischer R., Drepps A., Ullrich A., Schlessinger J. Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell. 1991 Apr 5;65(1):83–90. doi: 10.1016/0092-8674(91)90410-z. [DOI] [PubMed] [Google Scholar]
  30. Stephens J. M., Pilch P. F. The metabolic regulation and vesicular transport of GLUT4, the major insulin-responsive glucose transporter. Endocr Rev. 1995 Aug;16(4):529–546. doi: 10.1210/edrv-16-4-529. [DOI] [PubMed] [Google Scholar]
  31. Vaulont S., Kahn A. Transcriptional control of metabolic regulation genes by carbohydrates. FASEB J. 1994 Jan;8(1):28–35. doi: 10.1096/fasebj.8.1.8299888. [DOI] [PubMed] [Google Scholar]
  32. Vestergaard H., Andersen P. H., Lund S., Vedel P., Pedersen O. Expression of glycogen synthase and phosphofructokinase in muscle from type 1 (insulin-dependent) diabetic patients before and after intensive insulin treatment. Diabetologia. 1994 Jan;37(1):82–90. doi: 10.1007/BF00428782. [DOI] [PubMed] [Google Scholar]
  33. Vestergaard H., Bjørbaek C., Hansen T., Larsen F. S., Granner D. K., Pedersen O. Impaired activity and gene expression of hexokinase II in muscle from non-insulin-dependent diabetes mellitus patients. J Clin Invest. 1995 Dec;96(6):2639–2645. doi: 10.1172/JCI118329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vestergaard H., Lund S., Larsen F. S., Bjerrum O. J., Pedersen O. Glycogen synthase and phosphofructokinase protein and mRNA levels in skeletal muscle from insulin-resistant patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1993 Jun;91(6):2342–2350. doi: 10.1172/JCI116466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vidal H., Auboeuf D., Beylot M., Riou J. P. Regulation of insulin receptor mRNA splicing in rat tissues. Effect of fasting, aging, and diabetes. Diabetes. 1995 Oct;44(10):1196–1201. doi: 10.2337/diab.44.10.1196. [DOI] [PubMed] [Google Scholar]
  36. Wang A. M., Doyle M. V., Mark D. F. Quantitation of mRNA by the polymerase chain reaction. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9717–9721. doi: 10.1073/pnas.86.24.9717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wion K. L., Kirchgessner T. G., Lusis A. J., Schotz M. C., Lawn R. M. Human lipoprotein lipase complementary DNA sequence. Science. 1987 Mar 27;235(4796):1638–1641. doi: 10.1126/science.3823907. [DOI] [PubMed] [Google Scholar]
  38. Yki-Järvinen H., Vuorinen-Markkola H., Koranyi L., Bourey R., Tordjman K., Mueckler M., Permutt A. M., Koivisto V. A. Defect in insulin action on expression of the muscle/adipose tissue glucose transporter gene in skeletal muscle of type 1 diabetic patients. J Clin Endocrinol Metab. 1992 Sep;75(3):795–799. doi: 10.1210/jcem.75.3.1517369. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES