Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jul 1;98(1):167–176. doi: 10.1172/JCI118762

Myofibrillar calcium sensitivity of isometric tension is increased in human dilated cardiomyopathies: role of altered beta-adrenergically mediated protein phosphorylation.

M R Wolff 1, S H Buck 1, S W Stoker 1, M L Greaser 1, R M Mentzer 1
PMCID: PMC507413  PMID: 8690789

Abstract

To examine the role of alterations in myofibrillar function in human dilated cardiomyopathies, we determined isometric tension-calcium relations in permeabilized myocytesized myofibrillar preparations (n = 16) obtained from left ventricular biopsies from nine patients with dilated cardiomyopathy (DCM) during cardiac transplantation or left ventricular assist device implantation. Similar preparations (n = 10) were obtained from six normal hearts used for cardiac transplantation. Passive and maximal Ca2+-activated tensions were similar for the two groups. However, the calcium sensitivity of isometric tension was increased in DCM compared to nonfailing preparations ([Ca2+]50=2.46+/-0.49 microM vs 3.24+/-0.51 microM, P < 0.001). In vitro treatment with the catalytic subunit of protein kinase A (PKA) decreased calcium sensitivity of tension to a greater degree in failing than in normal preparations. Further, isometric tension-calcium relations in failing and normal myofibrillar preparations were similar after PKA treatment. These findings suggest that the increased calcium sensitivity of isometric tension in DCM may be due at least in part to a reduction of the beta-adrenergically mediated (PKA-dependent) phosphorylation of myofibrillar regulatory proteins such as troponin I and/or C-protein.

Full Text

The Full Text of this article is available as a PDF (347.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALPERT N. R., GORDON M. S. Myofibrillar adenosine triphosphatase activity in congestive heart failure. Am J Physiol. 1962 May;202:940–946. doi: 10.1152/ajplegacy.1962.202.5.940. [DOI] [PubMed] [Google Scholar]
  2. Anderson P. A., Greig A., Mark T. M., Malouf N. N., Oakeley A. E., Ungerleider R. M., Allen P. D., Kay B. K. Molecular basis of human cardiac troponin T isoforms expressed in the developing, adult, and failing heart. Circ Res. 1995 Apr;76(4):681–686. doi: 10.1161/01.res.76.4.681. [DOI] [PubMed] [Google Scholar]
  3. Anderson P. A., Malouf N. N., Oakeley A. E., Pagani E. D., Allen P. D. Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circ Res. 1991 Nov;69(5):1226–1233. doi: 10.1161/01.res.69.5.1226. [DOI] [PubMed] [Google Scholar]
  4. Backx P. H., Gao W. D., Azan-Backx M. D., Marban E. The relationship between contractile force and intracellular [Ca2+] in intact rat cardiac trabeculae. J Gen Physiol. 1995 Jan;105(1):1–19. doi: 10.1085/jgp.105.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beltrami C. A., Finato N., Rocco M., Feruglio G. A., Puricelli C., Cigola E., Quaini F., Sonnenblick E. H., Olivetti G., Anversa P. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation. 1994 Jan;89(1):151–163. doi: 10.1161/01.cir.89.1.151. [DOI] [PubMed] [Google Scholar]
  6. Beuckelmann D. J., Näbauer M., Erdmann E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation. 1992 Mar;85(3):1046–1055. doi: 10.1161/01.cir.85.3.1046. [DOI] [PubMed] [Google Scholar]
  7. Bristow M. R., Anderson F. L., Port J. D., Skerl L., Hershberger R. E., Larrabee P., O'Connell J. B., Renlund D. G., Volkman K., Murray J. Differences in beta-adrenergic neuroeffector mechanisms in ischemic versus idiopathic dilated cardiomyopathy. Circulation. 1991 Sep;84(3):1024–1039. doi: 10.1161/01.cir.84.3.1024. [DOI] [PubMed] [Google Scholar]
  8. Bristow M. R., Ginsburg R., Minobe W., Cubicciotti R. S., Sageman W. S., Lurie K., Billingham M. E., Harrison D. C., Stinson E. B. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982 Jul 22;307(4):205–211. doi: 10.1056/NEJM198207223070401. [DOI] [PubMed] [Google Scholar]
  9. Bristow M. R., Minobe W., Rasmussen R., Larrabee P., Skerl L., Klein J. W., Anderson F. L., Murray J., Mestroni L., Karwande S. V. Beta-adrenergic neuroeffector abnormalities in the failing human heart are produced by local rather than systemic mechanisms. J Clin Invest. 1992 Mar;89(3):803–815. doi: 10.1172/JCI115659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. D'Agnolo A., Luciani G. B., Mazzucco A., Gallucci V., Salviati G. Contractile properties and Ca2+ release activity of the sarcoplasmic reticulum in dilated cardiomyopathy. Circulation. 1992 Feb;85(2):518–525. doi: 10.1161/01.cir.85.2.518. [DOI] [PubMed] [Google Scholar]
  11. Damron D. S., Darvish A., Murphy L., Sweet W., Moravec C. S., Bond M. Arachidonic acid-dependent phosphorylation of troponin I and myosin light chain 2 in cardiac myocytes. Circ Res. 1995 Jun;76(6):1011–1019. doi: 10.1161/01.res.76.6.1011. [DOI] [PubMed] [Google Scholar]
  12. Early effects of tissue-type plasminogen activator added to conventional therapy on the culprit coronary lesion in patients presenting with ischemic cardiac pain at rest. Results of the Thrombolysis in Myocardial Ischemia (TIMI IIIA) Trial. Circulation. 1993 Jan;87(1):38–52. doi: 10.1161/01.cir.87.1.38. [DOI] [PubMed] [Google Scholar]
  13. Fabiato A. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. 1988;157:378–417. doi: 10.1016/0076-6879(88)57093-3. [DOI] [PubMed] [Google Scholar]
  14. Gao W. D., Backx P. H., Azan-Backx M., Marban E. Myofilament Ca2+ sensitivity in intact versus skinned rat ventricular muscle. Circ Res. 1994 Mar;74(3):408–415. doi: 10.1161/01.res.74.3.408. [DOI] [PubMed] [Google Scholar]
  15. Giulian G. G., Moss R. L., Greaser M. Improved methodology for analysis and quantitation of proteins on one-dimensional silver-stained slab gels. Anal Biochem. 1983 Mar;129(2):277–287. doi: 10.1016/0003-2697(83)90551-1. [DOI] [PubMed] [Google Scholar]
  16. Gwathmey J. K., Copelas L., MacKinnon R., Schoen F. J., Feldman M. D., Grossman W., Morgan J. P. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res. 1987 Jul;61(1):70–76. doi: 10.1161/01.res.61.1.70. [DOI] [PubMed] [Google Scholar]
  17. Gwathmey J. K., Hajjar R. J. Effect of protein kinase C activation on sarcoplasmic reticulum function and apparent myofibrillar Ca2+ sensitivity in intact and skinned muscles from normal and diseased human myocardium. Circ Res. 1990 Sep;67(3):744–752. doi: 10.1161/01.res.67.3.744. [DOI] [PubMed] [Google Scholar]
  18. Hajjar R. J., Gwathmey J. K., Briggs G. M., Morgan J. P. Differential effect of DPI 201-106 on the sensitivity of the myofilaments to Ca2+ in intact and skinned trabeculae from control and myopathic human hearts. J Clin Invest. 1988 Nov;82(5):1578–1584. doi: 10.1172/JCI113769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hajjar R. J., Gwathmey J. K. Cross-bridge dynamics in human ventricular myocardium. Regulation of contractility in the failing heart. Circulation. 1992 Dec;86(6):1819–1826. doi: 10.1161/01.cir.86.6.1819. [DOI] [PubMed] [Google Scholar]
  20. Hasenfuss G., Mulieri L. A., Leavitt B. J., Allen P. D., Haeberle J. R., Alpert N. R. Alteration of contractile function and excitation-contraction coupling in dilated cardiomyopathy. Circ Res. 1992 Jun;70(6):1225–1232. doi: 10.1161/01.res.70.6.1225. [DOI] [PubMed] [Google Scholar]
  21. Hofmann P. A., Miller W. P., Moss R. L. Altered calcium sensitivity of isometric tension in myocyte-sized preparations of porcine postischemic stunned myocardium. Circ Res. 1993 Jan;72(1):50–56. doi: 10.1161/01.res.72.1.50. [DOI] [PubMed] [Google Scholar]
  22. Hofmann P. A., Moss R. L. Effects of calcium on shortening velocity in frog chemically skinned atrial myocytes and in mechanically disrupted ventricular myocardium from rat. Circ Res. 1992 May;70(5):885–892. doi: 10.1161/01.res.70.5.885. [DOI] [PubMed] [Google Scholar]
  23. Hunkeler N. M., Kullman J., Murphy A. M. Troponin I isoform expression in human heart. Circ Res. 1991 Nov;69(5):1409–1414. doi: 10.1161/01.res.69.5.1409. [DOI] [PubMed] [Google Scholar]
  24. Jin J. P., Lin J. J. Rapid purification of mammalian cardiac troponin T and its isoform switching in rat hearts during development. J Biol Chem. 1988 May 25;263(15):7309–7315. [PubMed] [Google Scholar]
  25. Kentish J. C., ter Keurs H. E., Ricciardi L., Bucx J. J., Noble M. I. Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Influence of calcium concentrations on these relations. Circ Res. 1986 Jun;58(6):755–768. doi: 10.1161/01.res.58.6.755. [DOI] [PubMed] [Google Scholar]
  26. Krueger J. W., Pollack G. H. Myocardial sarcomere dynamics during isometric contraction. J Physiol. 1975 Oct;251(3):627–643. doi: 10.1113/jphysiol.1975.sp011112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Margossian S. S., White H. D., Caulfield J. B., Norton P., Taylor S., Slayter H. S. Light chain 2 profile and activity of human ventricular myosin during dilated cardiomyopathy. Identification of a causal agent for impaired myocardial function. Circulation. 1992 May;85(5):1720–1733. doi: 10.1161/01.cir.85.5.1720. [DOI] [PubMed] [Google Scholar]
  28. Mesnard L., Logeart D., Taviaux S., Diriong S., Mercadier J. J., Samson F. Human cardiac troponin T: cloning and expression of new isoforms in the normal and failing heart. Circ Res. 1995 Apr;76(4):687–692. doi: 10.1161/01.res.76.4.687. [DOI] [PubMed] [Google Scholar]
  29. Morano I., Hädicke K., Grom S., Koch A., Schwinger R. H., Böhm M., Bartel S., Erdmann E., Krause E. G. Titin, myosin light chains and C-protein in the developing and failing human heart. J Mol Cell Cardiol. 1994 Mar;26(3):361–368. doi: 10.1006/jmcc.1994.1045. [DOI] [PubMed] [Google Scholar]
  30. Moss R. L. Ca2+ regulation of mechanical properties of striated muscle. Mechanistic studies using extraction and replacement of regulatory proteins. Circ Res. 1992 May;70(5):865–884. doi: 10.1161/01.res.70.5.865. [DOI] [PubMed] [Google Scholar]
  31. Noland T. A., Jr, Kuo J. F. Protein kinase C phosphorylation of cardiac troponin I or troponin T inhibits Ca2(+)-stimulated actomyosin MgATPase activity. J Biol Chem. 1991 Mar 15;266(8):4974–4978. [PubMed] [Google Scholar]
  32. Parmacek M. S., Leiden J. M. Structure, function, and regulation of troponin C. Circulation. 1991 Sep;84(3):991–1003. doi: 10.1161/01.cir.84.3.991. [DOI] [PubMed] [Google Scholar]
  33. Persechini A., Stull J. T., Cooke R. The effect of myosin phosphorylation on the contractile properties of skinned rabbit skeletal muscle fibers. J Biol Chem. 1985 Jul 5;260(13):7951–7954. [PubMed] [Google Scholar]
  34. Pieske B., Kretschmann B., Meyer M., Holubarsch C., Weirich J., Posival H., Minami K., Just H., Hasenfuss G. Alterations in intracellular calcium handling associated with the inverse force-frequency relation in human dilated cardiomyopathy. Circulation. 1995 Sep 1;92(5):1169–1178. doi: 10.1161/01.cir.92.5.1169. [DOI] [PubMed] [Google Scholar]
  35. Pires E. M., Perry S. V. Purification and properties of myosin light-chain kinase from fast skeletal muscle. Biochem J. 1977 Oct 1;167(1):137–146. doi: 10.1042/bj1670137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rapundalo S. T., Solaro R. J., Kranias E. G. Inotropic responses to isoproterenol and phosphodiesterase inhibitors in intact guinea pig hearts: comparison of cyclic AMP levels and phosphorylation of sarcoplasmic reticulum and myofibrillar proteins. Circ Res. 1989 Jan;64(1):104–111. doi: 10.1161/01.res.64.1.104. [DOI] [PubMed] [Google Scholar]
  37. Schwinger R. H., Böhm M., Koch A., Schmidt U., Morano I., Eissner H. J., Uberfuhr P., Reichart B., Erdmann E. The failing human heart is unable to use the Frank-Starling mechanism. Circ Res. 1994 May;74(5):959–969. doi: 10.1161/01.res.74.5.959. [DOI] [PubMed] [Google Scholar]
  38. Solaro R. J. Myosin and why hearts fail. Circulation. 1992 May;85(5):1945–1947. doi: 10.1161/01.cir.85.5.1945. [DOI] [PubMed] [Google Scholar]
  39. Strang K. T., Sweitzer N. K., Greaser M. L., Moss R. L. Beta-adrenergic receptor stimulation increases unloaded shortening velocity of skinned single ventricular myocytes from rats. Circ Res. 1994 Mar;74(3):542–549. doi: 10.1161/01.res.74.3.542. [DOI] [PubMed] [Google Scholar]
  40. Sütsch G., Brunner U. T., von Schulthess C., Hirzel H. O., Hess O. M., Turina M., Krayenbuehl H. P., Schaub M. C. Hemodynamic performance and myosin light chain-1 expression of the hypertrophied left ventricle in aortic valve disease before and after valve replacement. Circ Res. 1992 May;70(5):1035–1043. doi: 10.1161/01.res.70.5.1035. [DOI] [PubMed] [Google Scholar]
  41. Venema R. C., Kuo J. F. Protein kinase C-mediated phosphorylation of troponin I and C-protein in isolated myocardial cells is associated with inhibition of myofibrillar actomyosin MgATPase. J Biol Chem. 1993 Feb 5;268(4):2705–2711. [PubMed] [Google Scholar]
  42. Wattanapermpool J., Guo X., Solaro R. J. The unique amino-terminal peptide of cardiac troponin I regulates myofibrillar activity only when it is phosphorylated. J Mol Cell Cardiol. 1995 Jul;27(7):1383–1391. doi: 10.1006/jmcc.1995.0131. [DOI] [PubMed] [Google Scholar]
  43. Wolff M. R., McDonald K. S., Moss R. L. Rate of tension development in cardiac muscle varies with level of activator calcium. Circ Res. 1995 Jan;76(1):154–160. doi: 10.1161/01.res.76.1.154. [DOI] [PubMed] [Google Scholar]
  44. Wolff M. R., Whitesell L. F., Moss R. L. Calcium sensitivity of isometric tension is increased in canine experimental heart failure. Circ Res. 1995 May;76(5):781–789. doi: 10.1161/01.res.76.5.781. [DOI] [PubMed] [Google Scholar]
  45. Yue D. T., Marban E., Wier W. G. Relationship between force and intracellular [Ca2+] in tetanized mammalian heart muscle. J Gen Physiol. 1986 Feb;87(2):223–242. doi: 10.1085/jgp.87.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zhang R., Zhao J., Mandveno A., Potter J. D. Cardiac troponin I phosphorylation increases the rate of cardiac muscle relaxation. Circ Res. 1995 Jun;76(6):1028–1035. doi: 10.1161/01.res.76.6.1028. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES