Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jul 15;98(2):540–555. doi: 10.1172/JCI118822

Glucose- and GTP-dependent stimulation of the carboxyl methylation of CDC42 in rodent and human pancreatic islets and pure beta cells. Evidence for an essential role of GTP-binding proteins in nutrient-induced insulin secretion.

A Kowluru 1, S E Seavey 1, G Li 1, R L Sorenson 1, A J Weinhaus 1, R Nesher 1, M E Rabaglia 1, J Vadakekalam 1, S A Metz 1
PMCID: PMC507460  PMID: 8755667

Abstract

Several GTP-binding proteins (G-proteins) undergo post-translational modifications (isoprenylation and carboxyl methylation) in pancreatic beta cells. Herein, two of these were identified as CDC42 and rap 1, using Western blotting and immunoprecipitation. Confocal microscopic data indicated that CDC42 is localized only in islet endocrine cells but not in acinar cells of the pancreas. CDC42 undergoes a guanine nucleotide-specific membrane association and carboxyl methylation in normal rat islets, human islets, and pure beta (HIT or INS-1) cells. GTPgammaS-dependent carboxyl methylation of a 23-kD protein was also demonstrable in secretory granule fractions from normal islets or beta cells. AFC (a specific inhibitor of prenyl-cysteine carboxyl methyl transferases) blocked the carboxyl methylation of CDC42 in five types of insulin-secreting cells, without blocking GTPgammaS-induced translocation, implying that methylation is a consequence (not a cause) of transfer to membrane sites. High glucose (but not a depolarizing concentration of K+) induced the carboxyl methylation of CDC42 in intact cells, as assessed after specific immunoprecipitation. This effect was abrogated by GTP depletion using mycophenolic acid and was restored upon GTP repletion by coprovision of guanosine. In contrast, although rap 1 was also carboxyl methylated, it was not translocated to the particulate fraction by GTPgammaS; furthermore, its methylation was also stimulated by 40 mM K+ (suggesting a role which is not specific to nutrient stimulation). AFC also impeded nutrient-induced (but not K+-induced) insulin secretion from islets and beta cells under static or perifusion conditions, whereas an inactive structural analogue of AFC failed to inhibit insulin release. These effects were reproduced not only by S-adenosylhomocysteine (another methylation inhibitor), but also by GTP depletion. Thus, the glucose- and GTP-dependent carboxyl methylation of G-proteins such as CDC42 is an obligate step in the stimulus-secretion coupling of nutrient-induced insulin secretion, but not in the exocytotic event itself. Furthermore, AFC blocked glucose-activated phosphoinositide turnover, which may provide a partial biochemical explanation for its effect on secretion, and implies that certain G-proteins must be carboxyl methylated for their interaction with signaling effector molecules, a step which can be regulated by intracellular availability of GTP.

Full Text

The Full Text of this article is available as a PDF (429.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abo A., Webb M. R., Grogan A., Segal A. W. Activation of NADPH oxidase involves the dissociation of p21rac from its inhibitory GDP/GTP exchange protein (rhoGDI) followed by its translocation to the plasma membrane. Biochem J. 1994 Mar 15;298(Pt 3):585–591. doi: 10.1042/bj2980585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asfari M., Janjic D., Meda P., Li G., Halban P. A., Wollheim C. B. Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology. 1992 Jan;130(1):167–178. doi: 10.1210/endo.130.1.1370150. [DOI] [PubMed] [Google Scholar]
  3. Backlund P. S., Jr Carboxyl methylation of the low molecular weight GTP-binding protein G25K: regulation of carboxyl methylation by rhoGDI. Biochem Biophys Res Commun. 1993 Oct 29;196(2):534–542. doi: 10.1006/bbrc.1993.2283. [DOI] [PubMed] [Google Scholar]
  4. Backlund P. S., Jr GTP-stimulated carboxyl methylation of a soluble form of the GTP-binding protein G25K in brain. J Biol Chem. 1992 Sep 15;267(26):18432–18439. [PubMed] [Google Scholar]
  5. Biden T. J., Peter-Riesch B., Schlegel W., Wollheim C. B. Ca2+-mediated generation of inositol 1,4,5-triphosphate and inositol 1,3,4,5-tetrakisphosphate in pancreatic islets. Studies with K+, glucose, and carbamylcholine. J Biol Chem. 1987 Mar 15;262(8):3567–3571. [PubMed] [Google Scholar]
  6. Bokoch G. M., Bohl B. P., Chuang T. H. Guanine nucleotide exchange regulates membrane translocation of Rac/Rho GTP-binding proteins. J Biol Chem. 1994 Dec 16;269(50):31674–31679. [PubMed] [Google Scholar]
  7. Bowman E. P., Uhlinger D. J., Lambeth J. D. Neutrophil phospholipase D is activated by a membrane-associated Rho family small molecular weight GTP-binding protein. J Biol Chem. 1993 Oct 15;268(29):21509–21512. [PubMed] [Google Scholar]
  8. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  9. Brelje T. C., Scharp D. W., Sorenson R. L. Three-dimensional imaging of intact isolated islets of Langerhans with confocal microscopy. Diabetes. 1989 Jun;38(6):808–814. doi: 10.2337/diab.38.6.808. [DOI] [PubMed] [Google Scholar]
  10. Brelje T. C., Wessendorf M. W., Sorenson R. L. Multicolor laser scanning confocal immunofluorescence microscopy: practical application and limitations. Methods Cell Biol. 1993;38:97–181. doi: 10.1016/s0091-679x(08)61001-8. [DOI] [PubMed] [Google Scholar]
  11. Clarke S. Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem. 1992;61:355–386. doi: 10.1146/annurev.bi.61.070192.002035. [DOI] [PubMed] [Google Scholar]
  12. Clarke S., Vogel J. P., Deschenes R. J., Stock J. Posttranslational modification of the Ha-ras oncogene protein: evidence for a third class of protein carboxyl methyltransferases. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4643–4647. doi: 10.1073/pnas.85.13.4643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Davidson H. W., Rhodes C. J., Hutton J. C. Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases. Nature. 1988 May 5;333(6168):93–96. doi: 10.1038/333093a0. [DOI] [PubMed] [Google Scholar]
  14. Dietrich A., Meister M., Brazil D., Camps M., Gierschik P. Stimulation of phospholipase C-beta 2 by recombinant guanine-nucleotide-binding protein beta gamma dimers produced in a baculovirus/insect cell expression system. Requirement of gamma-subunit isoprenylation for stimulation of phospholipase C. Eur J Biochem. 1994 Jan 15;219(1-2):171–178. doi: 10.1111/j.1432-1033.1994.tb19927.x. [DOI] [PubMed] [Google Scholar]
  15. Ding J., Lu D. J., Pérez-Sala D., Ma Y. T., Maddox J. F., Gilbert B. A., Badwey J. A., Rando R. R. Farnesyl-L-cysteine analogs can inhibit or initiate superoxide release by human neutrophils. J Biol Chem. 1994 Jun 17;269(24):16837–16844. [PubMed] [Google Scholar]
  16. Edgerton M. D., Chabert C., Chollet A., Arkinstall S. Palmitoylation but not the extreme amino-terminus of Gq alpha is required for coupling to the NK2 receptor. FEBS Lett. 1994 Nov 7;354(2):195–199. doi: 10.1016/0014-5793(94)01101-x. [DOI] [PubMed] [Google Scholar]
  17. Glomset J. A., Farnsworth C. C. Role of protein modification reactions in programming interactions between ras-related GTPases and cell membranes. Annu Rev Cell Biol. 1994;10:181–205. doi: 10.1146/annurev.cb.10.110194.001145. [DOI] [PubMed] [Google Scholar]
  18. Gotoh M., Maki T., Satomi S., Porter J., Bonner-Weir S., O'Hara C. J., Monaco A. P. Reproducible high yield of rat islets by stationary in vitro digestion following pancreatic ductal or portal venous collagenase injection. Transplantation. 1987 May;43(5):725–730. doi: 10.1097/00007890-198705000-00024. [DOI] [PubMed] [Google Scholar]
  19. Haag H., Grünberg B., Weber C., Vauti F., Aepfelbacher M., Siess W. Lovastatin inhibits receptor-stimulated Ca(2+)-influx in retinoic acid differentiated U937 and HL-60 cells. Cell Signal. 1994 Sep;6(7):735–742. doi: 10.1016/0898-6568(94)00041-7. [DOI] [PubMed] [Google Scholar]
  20. Hall A. Small GTP-binding proteins and the regulation of the actin cytoskeleton. Annu Rev Cell Biol. 1994;10:31–54. doi: 10.1146/annurev.cb.10.110194.000335. [DOI] [PubMed] [Google Scholar]
  21. Kowluru A., Metz S. A. Characterization of nucleoside diphosphokinase activity in human and rodent pancreatic beta cells: evidence for its role in the formation of guanosine triphosphate, a permissive factor for nutrient-induced insulin secretion. Biochemistry. 1994 Oct 18;33(41):12495–12503. doi: 10.1021/bi00207a017. [DOI] [PubMed] [Google Scholar]
  22. Kowluru A., Metz S. A. Regulation of guanine-nucleotide binding proteins in islet subcellular fractions by phospholipase-derived lipid mediators of insulin secretion. Biochim Biophys Acta. 1994 Jul 21;1222(3):360–368. doi: 10.1016/0167-4889(94)90041-8. [DOI] [PubMed] [Google Scholar]
  23. Kowluru A., Metz S. A. Stimulation by prostaglandin E2 of a high-affinity GTPase in the secretory granules of normal rat and human pancreatic islets. Biochem J. 1994 Jan 15;297(Pt 2):399–406. doi: 10.1042/bj2970399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kowluru A., Rabaglia M. E., Muse K. E., Metz S. A. Subcellular localization and kinetic characterization of guanine nucleotide binding proteins in normal rat and human pancreatic islets and transformed beta cells. Biochim Biophys Acta. 1994 Jul 21;1222(3):348–359. doi: 10.1016/0167-4889(94)90040-x. [DOI] [PubMed] [Google Scholar]
  25. Kowluru A., Rana R. S., MacDonald M. J. Stimulation of phospholipid methylation by glucose in pancreatic islets. Biochem Biophys Res Commun. 1984 Jul 31;122(2):706–711. doi: 10.1016/s0006-291x(84)80091-1. [DOI] [PubMed] [Google Scholar]
  26. Kowluru A., Seavey S. E., Rabaglia M. E., Metz S. A. Non-specific stimulatory effects of mastoparan on pancreatic islet nucleoside diphosphokinase activity: dissociation from insulin secretion. Biochem Pharmacol. 1995 Jan 18;49(2):263–266. doi: 10.1016/s0006-2952(94)00489-7. [DOI] [PubMed] [Google Scholar]
  27. Kowluru A., Seavey S. E., Rabaglia M. E., Nesher R., Metz S. A. Carboxylmethylation of the catalytic subunit of protein phosphatase 2A in insulin-secreting cells: evidence for functional consequences on enzyme activity and insulin secretion. Endocrinology. 1996 Jun;137(6):2315–2323. doi: 10.1210/endo.137.6.8641181. [DOI] [PubMed] [Google Scholar]
  28. Kowluru A., Seavey S. E., Rhodes C. J., Metz S. A. A novel regulatory mechanism for trimeric GTP-binding proteins in the membrane and secretory granule fractions of human and rodent beta cells. Biochem J. 1996 Jan 1;313(Pt 1):97–107. doi: 10.1042/bj3130097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Leiser M., Efrat S., Fleischer N. Evidence that Rap1 carboxylmethylation is involved in regulated insulin secretion. Endocrinology. 1995 Jun;136(6):2521–2530. doi: 10.1210/endo.136.6.7750474. [DOI] [PubMed] [Google Scholar]
  30. Lerner S., Haklai R., Kloog Y. Isoprenylation and carboxylmethylation in small GTP-binding proteins of pheochromocytoma (PC-12) cells. Cell Mol Neurobiol. 1992 Aug;12(4):333–351. doi: 10.1007/BF00734934. [DOI] [PubMed] [Google Scholar]
  31. Li G., Kowluru A., Metz S. A. Characterization of prenylcysteine methyltransferase in insulin-secreting cells. Biochem J. 1996 May 15;316(Pt 1):345–351. doi: 10.1042/bj3160345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Li G., Regazzi R., Roche E., Wollheim C. B. Blockade of mevalonate production by lovastatin attenuates bombesin and vasopressin potentiation of nutrient-induced insulin secretion in HIT-T15 cells. Probable involvement of small GTP-binding proteins. Biochem J. 1993 Jan 15;289(Pt 2):379–385. doi: 10.1042/bj2890379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ma Y. T., Shi Y. Q., Lim Y. H., McGrail S. H., Ware J. A., Rando R. R. Mechanistic studies on human platelet isoprenylated protein methyltransferase: farnesylcysteine analogs block platelet aggregation without inhibiting the methyltransferase. Biochemistry. 1994 May 10;33(18):5414–5420. doi: 10.1021/bi00184a009. [DOI] [PubMed] [Google Scholar]
  34. Maltese W. A., Sheridan K. M. Isoprenoid modification of G25K (Gp), a low molecular mass GTP-binding protein distinct from p21ras. J Biol Chem. 1990 Oct 15;265(29):17883–17890. [PubMed] [Google Scholar]
  35. Marr R. S., Blair L. C., Thorner J. Saccharomyces cerevisiae STE14 gene is required for COOH-terminal methylation of a-factor mating pheromone. J Biol Chem. 1990 Nov 25;265(33):20057–20060. [PubMed] [Google Scholar]
  36. Matsuda S., Nakanishi H., Sasaki T., Takai Y. A membrane-associated GDP/GTP exchange protein specific for Rho small GTP-binding protein - partial purification and characterization from rat brain. Oncogene. 1996 Feb 15;12(4):915–920. [PubMed] [Google Scholar]
  37. Metz S. A., Dunlop M. Production of phosphatidylethanol by phospholipase D phosphatidyl transferase in intact or dispersed pancreatic islets: evidence for the in situ metabolism of phosphatidylethanol. Arch Biochem Biophys. 1990 Dec;283(2):417–428. doi: 10.1016/0003-9861(90)90663-j. [DOI] [PubMed] [Google Scholar]
  38. Metz S. A., Meredith M., Rabaglia M. E., Kowluru A. Small elevations of glucose concentration redirect and amplify the synthesis of guanosine 5'-triphosphate in rat islets. J Clin Invest. 1993 Aug;92(2):872–882. doi: 10.1172/JCI116662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Metz S. A., Rabaglia M. E., Pintar T. J. Selective inhibitors of GTP synthesis impede exocytotic insulin release from intact rat islets. J Biol Chem. 1992 Jun 25;267(18):12517–12527. [PubMed] [Google Scholar]
  40. Metz S. A., Rabaglia M. E., Stock J. B., Kowluru A. Modulation of insulin secretion from normal rat islets by inhibitors of the post-translational modifications of GTP-binding proteins. Biochem J. 1993 Oct 1;295(Pt 1):31–40. doi: 10.1042/bj2950031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Moss J., Vaughan M. ADP-ribosylation factors, 20,000 M(r) guanine nucleotide-binding protein activators of cholera toxin and components of intracellular vesicular transport systems. Cell Signal. 1993 Jul;5(4):367–379. doi: 10.1016/0898-6568(93)90076-x. [DOI] [PubMed] [Google Scholar]
  42. Novick P., Brennwald P. Friends and family: the role of the Rab GTPases in vesicular traffic. Cell. 1993 Nov 19;75(4):597–601. doi: 10.1016/0092-8674(93)90478-9. [DOI] [PubMed] [Google Scholar]
  43. O'Connor C. M., Germain B. J. Kinetic and electrophoretic analysis of transmethylation reactions in intact Xenopus laevis oocytes. J Biol Chem. 1987 Jul 25;262(21):10404–10411. [PubMed] [Google Scholar]
  44. Philips M. R., Pillinger M. H., Staud R., Volker C., Rosenfeld M. G., Weissmann G., Stock J. B. Carboxyl methylation of Ras-related proteins during signal transduction in neutrophils. Science. 1993 Feb 12;259(5097):977–980. doi: 10.1126/science.8438158. [DOI] [PubMed] [Google Scholar]
  45. Pillinger M. H., Volker C., Stock J. B., Weissmann G., Philips M. R. Characterization of a plasma membrane-associated prenylcysteine-directed alpha carboxyl methyltransferase in human neutrophils. J Biol Chem. 1994 Jan 14;269(2):1486–1492. [PubMed] [Google Scholar]
  46. Prentki M., Matschinsky F. M. Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev. 1987 Oct;67(4):1185–1248. doi: 10.1152/physrev.1987.67.4.1185. [DOI] [PubMed] [Google Scholar]
  47. Regazzi R., Kikuchi A., Takai Y., Wollheim C. B. The small GTP-binding proteins in the cytosol of insulin-secreting cells are complexed to GDP dissociation inhibitor proteins. J Biol Chem. 1992 Sep 5;267(25):17512–17519. [PubMed] [Google Scholar]
  48. Regazzi R., Ullrich S., Kahn R. A., Wollheim C. B. Redistribution of ADP-ribosylation factor during stimulation of permeabilized cells with GTP analogues. Biochem J. 1991 May 1;275(Pt 3):639–644. doi: 10.1042/bj2750639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Robertson R. P., Zhang H. J., Pyzdrowski K. L., Walseth T. F. Preservation of insulin mRNA levels and insulin secretion in HIT cells by avoidance of chronic exposure to high glucose concentrations. J Clin Invest. 1992 Aug;90(2):320–325. doi: 10.1172/JCI115865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sawai T., Asada M., Nunoi H., Matsuda I., Ando S., Sasaki T., Kaibuchi K., Takai Y., Katayama K. Combination of arachidonic acid and guanosine 5'-O-(3-thiotriphosphate) induce translocation of rac p21s to membrane and activation of NADPH oxidase in a cell-free system. Biochem Biophys Res Commun. 1993 Aug 31;195(1):264–269. doi: 10.1006/bbrc.1993.2039. [DOI] [PubMed] [Google Scholar]
  51. Scheer A., Gierschik P. Farnesylcysteine analogues inhibit chemotactic peptide receptor-mediated G-protein activation in human HL-60 granulocyte membranes. FEBS Lett. 1993 Mar 15;319(1-2):110–114. doi: 10.1016/0014-5793(93)80047-x. [DOI] [PubMed] [Google Scholar]
  52. Shinjo K., Koland J. G., Hart M. J., Narasimhan V., Johnson D. I., Evans T., Cerione R. A. Molecular cloning of the gene for the human placental GTP-binding protein Gp (G25K): identification of this GTP-binding protein as the human homolog of the yeast cell-division-cycle protein CDC42. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9853–9857. doi: 10.1073/pnas.87.24.9853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Soldati T., Shapiro A. D., Svejstrup A. B., Pfeffer S. R. Membrane targeting of the small GTPase Rab9 is accompanied by nucleotide exchange. Nature. 1994 May 5;369(6475):76–78. doi: 10.1038/369076a0. [DOI] [PubMed] [Google Scholar]
  54. Stephenson R. C., Clarke S. Characterization of a rat liver protein carboxyl methyltransferase involved in the maturation of proteins with the -CXXX C-terminal sequence motif. J Biol Chem. 1992 Jul 5;267(19):13314–13319. [PubMed] [Google Scholar]
  55. Takai Y., Kaibuchi K., Kikuchi A., Kawata M. Small GTP-binding proteins. Int Rev Cytol. 1992;133:187–230. doi: 10.1016/s0074-7696(08)61861-6. [DOI] [PubMed] [Google Scholar]
  56. Tsai S. C., Adamik R., Haun R. S., Moss J., Vaughan M. Differential interaction of ADP-ribosylation factors 1, 3, and 5 with rat brain Golgi membranes. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9272–9276. doi: 10.1073/pnas.89.19.9272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Turk J., Wolf B. A., McDaniel M. L. Glucose-induced accumulation of inositol trisphosphates in isolated pancreatic islets. Predominance of the 1,3,4-isomer. Biochem J. 1986 Jul 1;237(1):259–263. doi: 10.1042/bj2370259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Ueda T., Kikuchi A., Ohga N., Yamamoto J., Takai Y. Purification and characterization from bovine brain cytosol of a novel regulatory protein inhibiting the dissociation of GDP from and the subsequent binding of GTP to rhoB p20, a ras p21-like GTP-binding protein. J Biol Chem. 1990 Jun 5;265(16):9373–9380. [PubMed] [Google Scholar]
  59. Ullrich O., Horiuchi H., Bucci C., Zerial M. Membrane association of Rab5 mediated by GDP-dissociation inhibitor and accompanied by GDP/GTP exchange. Nature. 1994 Mar 10;368(6467):157–160. doi: 10.1038/368157a0. [DOI] [PubMed] [Google Scholar]
  60. Vadakekalam J., Rabaglia M. E., Chen Q. H., Metz S. A. Role for GTP in glucose-induced phospholipase C activation in pancreatic islets. Am J Physiol. 1996 Jul;271(1 Pt 1):E85–E95. doi: 10.1152/ajpendo.1996.271.1.E85. [DOI] [PubMed] [Google Scholar]
  61. Vallar L., Biden T. J., Wollheim C. B. Guanine nucleotides induce Ca2+-independent insulin secretion from permeabilized RINm5F cells. J Biol Chem. 1987 Apr 15;262(11):5049–5056. [PubMed] [Google Scholar]
  62. Volker C., Miller R. A., McCleary W. R., Rao A., Poenie M., Backer J. M., Stock J. B. Effects of farnesylcysteine analogs on protein carboxyl methylation and signal transduction. J Biol Chem. 1991 Nov 15;266(32):21515–21522. [PubMed] [Google Scholar]
  63. Walker M. W., Bobak D. A., Tsai S. C., Moss J., Vaughan M. GTP but not GDP analogues promote association of ADP-ribosylation factors, 20-kDa protein activators of cholera toxin, with phospholipids and PC-12 cell membranes. J Biol Chem. 1992 Feb 15;267(5):3230–3235. [PubMed] [Google Scholar]
  64. Wedegaertner P. B., Chu D. H., Wilson P. T., Levis M. J., Bourne H. R. Palmitoylation is required for signaling functions and membrane attachment of Gq alpha and Gs alpha. J Biol Chem. 1993 Nov 25;268(33):25001–25008. [PubMed] [Google Scholar]
  65. Zawalich W. S., Zawalich K. C. Phosphoinositide hydrolysis and insulin release from isolated perifused rat islets. Studies with glucose. Diabetes. 1988 Sep;37(9):1294–1300. doi: 10.2337/diab.37.9.1294. [DOI] [PubMed] [Google Scholar]
  66. Zhang H. J., Walseth T. F., Robertson R. P. Insulin secretion and cAMP metabolism in HIT cells. Reciprocal and serial passage-dependent relationships. Diabetes. 1989 Jan;38(1):44–48. doi: 10.2337/diab.38.1.44. [DOI] [PubMed] [Google Scholar]
  67. Ziman M., Preuss D., Mulholland J., O'Brien J. M., Botstein D., Johnson D. I. Subcellular localization of Cdc42p, a Saccharomyces cerevisiae GTP-binding protein involved in the control of cell polarity. Mol Biol Cell. 1993 Dec;4(12):1307–1316. doi: 10.1091/mbc.4.12.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES