Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Oct 15;98(8):1728–1736. doi: 10.1172/JCI118971

G-protein alpha subunit Gi(alpha)2 mediates erythropoietin signal transduction in human erythroid precursors.

B A Miller 1, L Bell 1, C A Hansen 1, J D Robishaw 1, M E Linder 1, J Y Cheung 1
PMCID: PMC507610  PMID: 8878422

Abstract

Erythropoietin induces a dose-dependent increase in cytosolic calcium in human erythroblasts that is mediated by a voltage-independent Ca2+ channel. Inhibition of this response to erythropoietin by pertussis toxin suggests involvement of guanine nucleotide-binding regulatory proteins (G-proteins). The role of G-proteins in regulation of the erythropoietin-modulated Ca2+ channel was delineated here by microinjection of G-protein modulators or subunits into human erythroid precursors. This is the first report on the use of microinjection to study erythropoietin signal transduction in normal precursor cells. Fura-2 loaded day-10 burst-forming units-erythroid-derived erythroblasts were used for microinjection and free intracellular calcium concentration ([Ca(i)]) was measured with digital video imaging. BCECF (1,2',7'-bis(2-carboxyethyl)-5-(and -6-)-carboxyfluorescein) was included in microinjectate, and an increase in BCECF fluorescence was evidence of successful microinjection. Cells were microinjected with nonhydrolyzable analogues of GTP, GTPgammaS or GDPbetaS, which maintain the alpha subunit in an activated or inactivated state, respectively. [Ca(i)] increased significantly in a dose-dependent manner after microinjection of GTPgammaS. However, injection of GDPbetaS blocked the erythropoietin-induced calcium increase, providing direct evidence that activation of a G-protein is required. To delineate which G-protein subunits are involved, alpha or betagamma transducin subunits were purified and microinjected as a sink for betagamma or alpha subunits in the erythroblast, respectively. Transducin betagamma, but not alpha, subunits eliminated the calcium response to erythropoietin, demonstrating the primary role of the alpha subunit. Microinjected antibodies to Gi(alpha)2, but not Gi(alpha)1 or Gi(alpha)3, blocked the erythropoietin-stimulated [Ca(i)] rise, identifying Gi(alpha)2 as the subunit involved. This was confirmed by the ability of microinjected recombinant myristoylated Gi(alpha)2, but not Gi(alpha)1 or Gi(alpha)3 subunits, to reconstitute the response of pertussis toxin-treated erythroblasts to erythropoietin. These data directly demonstrate a physiologic function of G-proteins in hematopoietic cells and show that Gi(alpha)2 is required in erythropoietin modulation of [Ca(i)] via influx through calcium channels.

Full Text

The Full Text of this article is available as a PDF (306.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amatruda T. T., 3rd, Steele D. A., Slepak V. Z., Simon M. I. G alpha 16, a G protein alpha subunit specifically expressed in hematopoietic cells. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5587–5591. doi: 10.1073/pnas.88.13.5587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bigay J., Chabre M. Purification of transducin. Methods Enzymol. 1994;237:139–146. doi: 10.1016/s0076-6879(94)37058-3. [DOI] [PubMed] [Google Scholar]
  3. Billat C., Delemer B., Correze C., Haye B. Effects of pertussis toxin on the erythropoietin-stimulated proliferation and differentiation of erythroid-responsive cells. Biol Neonate. 1991;60(6):371–376. doi: 10.1159/000243435. [DOI] [PubMed] [Google Scholar]
  4. Boyer J. L., Graber S. G., Waldo G. L., Harden T. K., Garrison J. C. Selective activation of phospholipase C by recombinant G-protein alpha- and beta gamma-subunits. J Biol Chem. 1994 Jan 28;269(4):2814–2819. [PubMed] [Google Scholar]
  5. Cheung J. Y., Elensky M. B., Brauneis U., Scaduto R. C., Jr, Bell L. L., Tillotson D. L., Miller B. A. Ion channels in human erythroblasts. Modulation by erythropoietin. J Clin Invest. 1992 Nov;90(5):1850–1856. doi: 10.1172/JCI116061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clapham D. E., Neer E. J. New roles for G-protein beta gamma-dimers in transmembrane signalling. Nature. 1993 Sep 30;365(6445):403–406. doi: 10.1038/365403a0. [DOI] [PubMed] [Google Scholar]
  7. Condorelli G., Vitelli L., Valtieri M., Marta I., Montesoro E., Lulli V., Baer R., Peschle C. Coordinate expression and developmental role of Id2 protein and TAL1/E2A heterodimer in erythroid progenitor differentiation. Blood. 1995 Jul 1;86(1):164–175. [PubMed] [Google Scholar]
  8. Corneliussen B., Holm M., Waltersson Y., Onions J., Hallberg B., Thornell A., Grundström T. Calcium/calmodulin inhibition of basic-helix-loop-helix transcription factor domains. Nature. 1994 Apr 21;368(6473):760–764. doi: 10.1038/368760a0. [DOI] [PubMed] [Google Scholar]
  9. Corre I., Hermouet S. Regulation of colony-stimulating factor 1-induced proliferation by heterotrimeric Gi2 proteins. Blood. 1995 Sep 1;86(5):1776–1783. [PubMed] [Google Scholar]
  10. Ewald D. A., Pang I. H., Sternweis P. C., Miller R. J. Differential G protein-mediated coupling of neurotransmitter receptors to Ca2+ channels in rat dorsal root ganglion neurons in vitro. Neuron. 1989 Feb;2(2):1185–1193. doi: 10.1016/0896-6273(89)90185-2. [DOI] [PubMed] [Google Scholar]
  11. Farnsworth C. L., Freshney N. W., Rosen L. B., Ghosh A., Greenberg M. E., Feig L. A. Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF. Nature. 1995 Aug 10;376(6540):524–527. doi: 10.1038/376524a0. [DOI] [PubMed] [Google Scholar]
  12. Faure M., Voyno-Yasenetskaya T. A., Bourne H. R. cAMP and beta gamma subunits of heterotrimeric G proteins stimulate the mitogen-activated protein kinase pathway in COS-7 cells. J Biol Chem. 1994 Mar 18;269(11):7851–7854. [PubMed] [Google Scholar]
  13. Felder C. C., Singer-Lahat D., Mathes C. Voltage-independent calcium channels. Regulation by receptors and intracellular calcium stores. Biochem Pharmacol. 1994 Nov 29;48(11):1997–2004. doi: 10.1016/0006-2952(94)90498-7. [DOI] [PubMed] [Google Scholar]
  14. Gagnon A. W., Manning D. R., Catani L., Gewirtz A., Poncz M., Brass L. F. Identification of Gz alpha as a pertussis toxin-insensitive G protein in human platelets and megakaryocytes. Blood. 1991 Sep 1;78(5):1247–1253. [PubMed] [Google Scholar]
  15. Gillo B., Ma Y. S., Marks A. R. Calcium influx in induced differentiation of murine erythroleukemia cells. Blood. 1993 Feb 1;81(3):783–792. [PubMed] [Google Scholar]
  16. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  17. Greenberg M. E., Ziff E. B., Greene L. A. Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science. 1986 Oct 3;234(4772):80–83. doi: 10.1126/science.3749894. [DOI] [PubMed] [Google Scholar]
  18. Hepler J. R., Gilman A. G. G proteins. Trends Biochem Sci. 1992 Oct;17(10):383–387. doi: 10.1016/0968-0004(92)90005-t. [DOI] [PubMed] [Google Scholar]
  19. Ihle J. N. Cytokine receptor signalling. Nature. 1995 Oct 19;377(6550):591–594. doi: 10.1038/377591a0. [DOI] [PubMed] [Google Scholar]
  20. Ihle J. N., Witthuhn B. A., Quelle F. W., Yamamoto K., Silvennoinen O. Signaling through the hematopoietic cytokine receptors. Annu Rev Immunol. 1995;13:369–398. doi: 10.1146/annurev.iy.13.040195.002101. [DOI] [PubMed] [Google Scholar]
  21. Kesselring F., Spicher K., Porzig H. Changes in G protein pattern and in G protein-dependent signaling during erythropoietin- and dimethylsulfoxide-induced differentiation of murine erythroleukemia cells. Blood. 1994 Dec 15;84(12):4088–4098. [PubMed] [Google Scholar]
  22. Kuramochi S., Sugimoto Y., Ikawa Y., Todokoro K. Transmembrane signaling during erythropoietin- and dimethylsulfoxide-induced erythroid cell differentiation. Eur J Biochem. 1990 Oct 5;193(1):163–168. doi: 10.1111/j.1432-1033.1990.tb19318.x. [DOI] [PubMed] [Google Scholar]
  23. Lev S., Moreno H., Martinez R., Canoll P., Peles E., Musacchio J. M., Plowman G. D., Rudy B., Schlessinger J. Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature. 1995 Aug 31;376(6543):737–745. doi: 10.1038/376737a0. [DOI] [PubMed] [Google Scholar]
  24. Linder M. E., Ewald D. A., Miller R. J., Gilman A. G. Purification and characterization of Go alpha and three types of Gi alpha after expression in Escherichia coli. J Biol Chem. 1990 May 15;265(14):8243–8251. [PubMed] [Google Scholar]
  25. Mapara M. Y., Bommert K., Bargou R. C., Leng C., Beck C., Ludwig W. D., Gierschik P., Dörken B. G protein subunit G alpha 16 expression is restricted to progenitor B cells during human B-cell differentiation. Blood. 1995 Apr 1;85(7):1836–1842. [PubMed] [Google Scholar]
  26. Matsuoka M., Kaziro Y., Asano S., Ogata E. Analysis of the expression of seven G protein alpha subunit genes in hematopoietic cells. Am J Med Sci. 1993 Aug;306(2):89–93. doi: 10.1097/00000441-199308000-00004. [DOI] [PubMed] [Google Scholar]
  27. McMahon G., Alsina J. L., Levy S. B. Induction of a Ca2+, Mg2+-dependent endonuclease activity during the early stages of murine erythroleukemic cell differentiation. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7461–7465. doi: 10.1073/pnas.81.23.7461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Miller B. A., Cheung J. Y. Mechanisms of erythropoietin signal transduction: involvement of calcium channels. Proc Soc Exp Biol Med. 1994 Jul;206(3):263–267. doi: 10.3181/00379727-206-43756. [DOI] [PubMed] [Google Scholar]
  29. Miller B. A., Cheung J. Y., Tillotson D. L., Hope S. M., Scaduto R. C., Jr Erythropoietin stimulates a rise in intracellular-free calcium concentration in single BFU-E derived erythroblasts at specific stages of differentiation. Blood. 1989 Apr;73(5):1188–1194. [PubMed] [Google Scholar]
  30. Miller B. A., Foster K., Robishaw J. D., Whitfield C. F., Bell L., Cheung J. Y. Role of pertussis toxin-sensitive guanosine triphosphate-binding proteins in the response of erythroblasts to erythropoietin. Blood. 1991 Feb 1;77(3):486–492. [PubMed] [Google Scholar]
  31. Morgan J. I., Curran T. Role of ion flux in the control of c-fos expression. Nature. 1986 Aug 7;322(6079):552–555. doi: 10.1038/322552a0. [DOI] [PubMed] [Google Scholar]
  32. Mumby S. M., Linder M. E. Myristoylation of G-protein alpha subunits. Methods Enzymol. 1994;237:254–268. doi: 10.1016/s0076-6879(94)37067-2. [DOI] [PubMed] [Google Scholar]
  33. Okamoto T., Katada T., Murayama Y., Ui M., Ogata E., Nishimoto I. A simple structure encodes G protein-activating function of the IGF-II/mannose 6-phosphate receptor. Cell. 1990 Aug 24;62(4):709–717. doi: 10.1016/0092-8674(90)90116-v. [DOI] [PubMed] [Google Scholar]
  34. Pace A. M., Wong Y. H., Bourne H. R. A mutant alpha subunit of Gi2 induces neoplastic transformation of Rat-1 cells. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7031–7035. doi: 10.1073/pnas.88.16.7031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Penner R., Matthews G., Neher E. Regulation of calcium influx by second messengers in rat mast cells. Nature. 1988 Aug 11;334(6182):499–504. doi: 10.1038/334499a0. [DOI] [PubMed] [Google Scholar]
  36. Schultz G., Rosenthal W., Hescheler J., Trautwein W. Role of G proteins in calcium channel modulation. Annu Rev Physiol. 1990;52:275–292. doi: 10.1146/annurev.ph.52.030190.001423. [DOI] [PubMed] [Google Scholar]
  37. Sheng M., Thompson M. A., Greenberg M. E. CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science. 1991 Jun 7;252(5011):1427–1430. doi: 10.1126/science.1646483. [DOI] [PubMed] [Google Scholar]
  38. Todokoro K., Kanazawa S., Amanuma H., Ikawa Y. Specific binding of erythropoietin to its receptor on responsive mouse erythroleukemia cells. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4126–4130. doi: 10.1073/pnas.84.12.4126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Townsend P. V., Crouch M. F., Mak N. K., Hapel A. J. Localization of the GTP-binding protein Gi alpha in myelomonocytic progenitor cells is regulated by proliferation (GM-CSF, IL-3) and differentiation (TNF) signals. Growth Factors. 1993;9(1):21–30. doi: 10.3109/08977199308991579. [DOI] [PubMed] [Google Scholar]
  40. Watkins D. C., Johnson G. L., Malbon C. C. Regulation of the differentiation of teratocarcinoma cells into primitive endoderm by G alpha i2. Science. 1992 Nov 20;258(5086):1373–1375. doi: 10.1126/science.1455234. [DOI] [PubMed] [Google Scholar]
  41. Wegner M., Cao Z., Rosenfeld M. G. Calcium-regulated phosphorylation within the leucine zipper of C/EBP beta. Science. 1992 Apr 17;256(5055):370–373. doi: 10.1126/science.256.5055.370. [DOI] [PubMed] [Google Scholar]
  42. Wilkie T. M., Scherle P. A., Strathmann M. P., Slepak V. Z., Simon M. I. Characterization of G-protein alpha subunits in the Gq class: expression in murine tissues and in stromal and hematopoietic cell lines. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10049–10053. doi: 10.1073/pnas.88.22.10049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Williams A. G., Woolkalis M. J., Poncz M., Manning D. R., Gewirtz A. M., Brass L. F. Identification of the pertussis toxin-sensitive G proteins in platelets, megakaryocytes, and human erythroleukemia cells. Blood. 1990 Aug 15;76(4):721–730. [PubMed] [Google Scholar]
  44. Yelamarty R. V., Miller B. A., Scaduto R. C., Jr, Yu F. T., Tillotson D. L., Cheung J. Y. Three-dimensional intracellular calcium gradients in single human burst-forming units-erythroid-derived erythroblasts induced by erythropoietin. J Clin Invest. 1990 Jun;85(6):1799–1809. doi: 10.1172/JCI114638. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES