Abstract
To understand the factors contributing to the synthesis of human apolipoprotein AI (apoAI), relative apoAI synthesis was measured from endoscopic biopsy samples obtained from 18 healthy volunteers. The relative amount of apoAI synthesis was directly correlated with steady state intestinal apoAI mRNA levels and a 10-fold within-group variability was observed. Analysis of genomic DNA from the subjects revealed five polymorphic sites which defined two haplotypes in the intestinal enhancer region of the apoAI gene located upstream of the apolipoprotein CIII gene transcriptional start site (+ 1): (-641 C to A, -630 G to A, -625 T to deletion, -482 C to T, and -455 T to C). The population frequencies of the wild-type and mutant alleles were 0.53 and 0.44, respectively. Mean steady state apoAI mRNA levels and mean relative apoAI synthesis were 49 and 37% lower, respectively, in homozygotes for the mutant allele and 28 and 41% lower, respectively, in heterozygotes than in homozygotes for the wild-type allele (P < 0.05 for both). Site-directed mutants of apoAI gene promoter/reporter constructs containing the above mutations were transfected into Caco-2 cells and showed a 46% decrease in transcriptional activity compared with the wild type (P < 0.001); however, no significant differences were observed in HepG2 cells. Electrophoretic mobility shift assays showed that the mutated sequences from -655 to -610 bound Caco-2 cell nuclear protein(s) while the wild type did not. These results indicate that intestinal apoAI gene transcription and protein synthesis are genetically determined and are reduced in the presence of common mutations which induced binding of nuclear protein(s), possibly a transcriptional repressor.
Full Text
The Full Text of this article is available as a PDF (309.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apfelbaum T. F., Davidson N. O., Glickman R. M. Apolipoprotein A-IV synthesis in rat intestine: regulation by dietary triglyceride. Am J Physiol. 1987 May;252(5 Pt 1):G662–G666. doi: 10.1152/ajpgi.1987.252.5.G662. [DOI] [PubMed] [Google Scholar]
- Beaty J. S., West K. A., Nepom G. T. Functional effects of a natural polymorphism in the transcriptional regulatory sequence of HLA-DQB1. Mol Cell Biol. 1995 Sep;15(9):4771–4782. doi: 10.1128/mcb.15.9.4771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bienvenu T., Lacronique V., Raymondjean M., Cazeneuve C., Hubert D., Kaplan J. C., Beldjord C. Three novel sequence variations in the 5' upstream region of the cystic fibrosis transmembrane conductance regulator (CFTR) gene: two polymorphisms and one putative molecular defect. Hum Genet. 1995 Jun;95(6):698–702. doi: 10.1007/BF00209490. [DOI] [PubMed] [Google Scholar]
- Bisaha J. G., Simon T. C., Gordon J. I., Breslow J. L. Characterization of an enhancer element in the human apolipoprotein C-III gene that regulates human apolipoprotein A-I gene expression in the intestinal epithelium. J Biol Chem. 1995 Aug 25;270(34):19979–19988. doi: 10.1074/jbc.270.34.19979. [DOI] [PubMed] [Google Scholar]
- Castelli W. P., Doyle J. T., Gordon T., Hames C. G., Hjortland M. C., Hulley S. B., Kagan A., Zukel W. J. HDL cholesterol and other lipids in coronary heart disease. The cooperative lipoprotein phenotyping study. Circulation. 1977 May;55(5):767–772. doi: 10.1161/01.cir.55.5.767. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Crossley M., Brownlee G. G. Disruption of a C/EBP binding site in the factor IX promoter is associated with haemophilia B. Nature. 1990 May 31;345(6274):444–446. doi: 10.1038/345444a0. [DOI] [PubMed] [Google Scholar]
- Dammerman M., Sandkuijl L. A., Halaas J. L., Chung W., Breslow J. L. An apolipoprotein CIII haplotype protective against hypertriglyceridemia is specified by promoter and 3' untranslated region polymorphisms. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4562–4566. doi: 10.1073/pnas.90.10.4562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davidson N. O., Glickman R. M. Apolipoprotein A-I synthesis in rat small intestine: regulation by dietary triglyceride and biliary lipid. J Lipid Res. 1985 Mar;26(3):368–379. [PubMed] [Google Scholar]
- Davidson N. O., Kollmer M. E., Glickman R. M. Apolipoprotein B synthesis in rat small intestine: regulation by dietary triglyceride and biliary lipid. J Lipid Res. 1986 Jan;27(1):30–39. [PubMed] [Google Scholar]
- Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edlund T., Walker M. D., Barr P. J., Rutter W. J. Cell-specific expression of the rat insulin gene: evidence for role of two distinct 5' flanking elements. Science. 1985 Nov 22;230(4728):912–916. doi: 10.1126/science.3904002. [DOI] [PubMed] [Google Scholar]
- Efremov D. G., Dimovski A. J., Huisman T. H. The -158 (C-->T) promoter mutation is responsible for the increased transcription of the 3' gamma gene in the Atlanta type of hereditary persistence of fetal hemoglobin. Blood. 1994 Jun 1;83(11):3350–3355. [PubMed] [Google Scholar]
- Elion J., Berg P. E., Lapouméroulie C., Trabuchet G., Mittelman M., Krishnamoorthy R., Schechter A. N., Labie D. DNA sequence variation in a negative control region 5' to the beta-globin gene correlates with the phenotypic expression of the beta s mutation. Blood. 1992 Feb 1;79(3):787–792. [PubMed] [Google Scholar]
- Elshourbagy N. A., Boguski M. S., Liao W. S., Jefferson L. S., Gordon J. I., Taylor J. M. Expression of rat apolipoprotein A-IV and A-I genes: mRNA induction during development and in response to glucocorticoids and insulin. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8242–8246. doi: 10.1073/pnas.82.23.8242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eriksson P., Kallin B., van 't Hooft F. M., Båvenholm P., Hamsten A. Allele-specific increase in basal transcription of the plasminogen-activator inhibitor 1 gene is associated with myocardial infarction. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1851–1855. doi: 10.1073/pnas.92.6.1851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ginsburg G. S., Ozer J., Karathanasis S. K. Intestinal apolipoprotein AI gene transcription is regulated by multiple distinct DNA elements and is synergistically activated by the orphan nuclear receptor, hepatocyte nuclear factor 4. J Clin Invest. 1995 Jul;96(1):528–538. doi: 10.1172/JCI118065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glickman R. M., Magun A. M. High-density lipoprotein formation by the intestine. Methods Enzymol. 1986;129:519–536. doi: 10.1016/0076-6879(86)29089-8. [DOI] [PubMed] [Google Scholar]
- Glueck C. J., Gartside P., Fallat R. W., Sielski J., Steiner P. M. Longevity syndromes: familial hypobeta and familial hyperalpha lipoproteinemia. J Lab Clin Med. 1976 Dec;88(6):941–957. [PubMed] [Google Scholar]
- Golder-Novoselsky E., Forte T. M., Nichols A. V., Rubin E. M. Apolipoprotein AI expression and high density lipoprotein distribution in transgenic mice during development. J Biol Chem. 1992 Oct 15;267(29):20787–20790. [PubMed] [Google Scholar]
- Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
- Green P. H., Glickman R. M., Saudek C. D., Blum C. B., Tall A. R. Human intestinal lipoproteins. Studies in chyluric subjects. J Clin Invest. 1979 Jul;64(1):233–242. doi: 10.1172/JCI109444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harnish D. C., Malik S., Karathanasis S. K. Activation of apolipoprotein AI gene transcription by the liver-enriched factor HNF-3. J Biol Chem. 1994 Nov 11;269(45):28220–28226. [PubMed] [Google Scholar]
- Hayek T., Ito Y., Azrolan N., Verdery R. B., Aalto-Setälä K., Walsh A., Breslow J. L. Dietary fat increases high density lipoprotein (HDL) levels both by increasing the transport rates and decreasing the fractional catabolic rates of HDL cholesterol ester and apolipoprotein (Apo) A-I. Presentation of a new animal model and mechanistic studies in human Apo A-I transgenic and control mice. J Clin Invest. 1993 Apr;91(4):1665–1671. doi: 10.1172/JCI116375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito Y., Azrolan N., O'Connell A., Walsh A., Breslow J. L. Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science. 1990 Aug 17;249(4970):790–793. doi: 10.1126/science.2167514. [DOI] [PubMed] [Google Scholar]
- Karathanasis S. K., McPherson J., Zannis V. I., Breslow J. L. Linkage of human apolipoproteins A-I and C-III genes. 1983 Jul 28-Aug 3Nature. 304(5924):371–373. doi: 10.1038/304371a0. [DOI] [PubMed] [Google Scholar]
- Kilbourne E. J., Widom R., Harnish D. C., Malik S., Karathanasis S. K. Involvement of early growth response factor Egr-1 in apolipoprotein AI gene transcription. J Biol Chem. 1995 Mar 24;270(12):7004–7010. doi: 10.1074/jbc.270.12.7004. [DOI] [PubMed] [Google Scholar]
- Koivisto U. M., Palvimo J. J., Jänne O. A., Kontula K. A single-base substitution in the proximal Sp1 site of the human low density lipoprotein receptor promoter as a cause of heterozygous familial hypercholesterolemia. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10526–10530. doi: 10.1073/pnas.91.22.10526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kunkel L. M., Smith K. D., Boyer S. H., Borgaonkar D. S., Wachtel S. S., Miller O. J., Breg W. R., Jones H. W., Jr, Rary J. M. Analysis of human Y-chromosome-specific reiterated DNA in chromosome variants. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1245–1249. doi: 10.1073/pnas.74.3.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Li W. W., Dammerman M. M., Smith J. D., Metzger S., Breslow J. L., Leff T. Common genetic variation in the promoter of the human apo CIII gene abolishes regulation by insulin and may contribute to hypertriglyceridemia. J Clin Invest. 1995 Dec;96(6):2601–2605. doi: 10.1172/JCI118324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Louis P., Vincent R., Cavadore P., Clot J., Eliaou J. F. Differential transcriptional activities of HLA-DR genes in the various haplotypes. J Immunol. 1994 Dec 1;153(11):5059–5067. [PubMed] [Google Scholar]
- Luckow B., Schütz G. CAT constructions with multiple unique restriction sites for the functional analysis of eukaryotic promoters and regulatory elements. Nucleic Acids Res. 1987 Jul 10;15(13):5490–5490. doi: 10.1093/nar/15.13.5490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogami K., Hadzopoulou-Cladaras M., Cladaras C., Zannis V. I. Promoter elements and factors required for hepatic and intestinal transcription of the human ApoCIII gene. J Biol Chem. 1990 Jun 15;265(17):9808–9815. [PubMed] [Google Scholar]
- Pandurò A., Lin-Lee Y. C., Chan L., Shafritz D. A. Transcriptional and posttranscriptional regulation of apolipoprotein E, A-I, and A-II gene expression in normal rat liver and during several pathophysiologic states. Biochemistry. 1990 Sep 11;29(36):8430–8435. doi: 10.1021/bi00488a033. [DOI] [PubMed] [Google Scholar]
- Reaven G. M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988 Dec;37(12):1595–1607. doi: 10.2337/diab.37.12.1595. [DOI] [PubMed] [Google Scholar]
- Reisher S. R., Hughes T. E., Ordovas J. M., Schaefer E. J., Feinstein S. I. Increased expression of apolipoprotein genes accompanies differentiation in the intestinal cell line Caco-2. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5757–5761. doi: 10.1073/pnas.90.12.5757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rottman J. N., Widom R. L., Nadal-Ginard B., Mahdavi V., Karathanasis S. K. A retinoic acid-responsive element in the apolipoprotein AI gene distinguishes between two different retinoic acid response pathways. Mol Cell Biol. 1991 Jul;11(7):3814–3820. doi: 10.1128/mcb.11.7.3814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin E. M., Ishida B. Y., Clift S. M., Krauss R. M. Expression of human apolipoprotein A-I in transgenic mice results in reduced plasma levels of murine apolipoprotein A-I and the appearance of two new high density lipoprotein size subclasses. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):434–438. doi: 10.1073/pnas.88.2.434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sastry K. N., Seedorf U., Karathanasis S. K. Different cis-acting DNA elements control expression of the human apolipoprotein AI gene in different cell types. Mol Cell Biol. 1988 Feb;8(2):605–614. doi: 10.1128/mcb.8.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith J. D., Brinton E. A., Breslow J. L. Polymorphism in the human apolipoprotein A-I gene promoter region. Association of the minor allele with decreased production rate in vivo and promoter activity in vitro. J Clin Invest. 1992 Jun;89(6):1796–1800. doi: 10.1172/JCI115783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sorci-Thomas M., Kearns M. W. Transcriptional regulation of the apolipoprotein A-I gene. Species-specific expression correlates with rates of gene transcription. J Biol Chem. 1991 Sep 25;266(27):18045–18050. [PubMed] [Google Scholar]
- Sorci-Thomas M., Prack M. M., Dashti N., Johnson F., Rudel L. L., Williams D. L. Apolipoprotein (apo) A-I production and mRNA abundance explain plasma apoA-I and high density lipoprotein differences between two nonhuman primate species with high and low susceptibilities to diet-induced hypercholesterolemia. J Biol Chem. 1988 Apr 15;263(11):5183–5189. [PubMed] [Google Scholar]
- Sorci-Thomas M., Prack M. M., Dashti N., Johnson F., Rudel L. L., Williams D. L. Differential effects of dietary fat on the tissue-specific expression of the apolipoprotein A-I gene: relationship to plasma concentration of high density lipoproteins. J Lipid Res. 1989 Sep;30(9):1397–1403. [PubMed] [Google Scholar]
- Surguchov A. P., Page G. P., Smith L., Patsch W., Boerwinkle E. Polymorphic markers in apolipoprotein C-III gene flanking regions and hypertriglyceridemia. Arterioscler Thromb Vasc Biol. 1996 Aug;16(8):941–947. doi: 10.1161/01.atv.16.8.941. [DOI] [PubMed] [Google Scholar]
- Tam S. P., Archer T. K., Deeley R. G. Biphasic effects of estrogen on apolipoprotein synthesis in human hepatoma cells: mechanism of antagonism by testosterone. Proc Natl Acad Sci U S A. 1986 May;83(10):3111–3115. doi: 10.1073/pnas.83.10.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walsh A., Azrolan N., Wang K., Marcigliano A., O'Connell A., Breslow J. L. Intestinal expression of the human apoA-I gene in transgenic mice is controlled by a DNA region 3' to the gene in the promoter of the adjacent convergently transcribed apoC-III gene. J Lipid Res. 1993 Apr;34(4):617–623. [PubMed] [Google Scholar]
- Walsh A., Ito Y., Breslow J. L. High levels of human apolipoprotein A-I in transgenic mice result in increased plasma levels of small high density lipoprotein (HDL) particles comparable to human HDL3. J Biol Chem. 1989 Apr 15;264(11):6488–6494. [PubMed] [Google Scholar]
- Widom R. L., Ladias J. A., Kouidou S., Karathanasis S. K. Synergistic interactions between transcription factors control expression of the apolipoprotein AI gene in liver cells. Mol Cell Biol. 1991 Feb;11(2):677–687. doi: 10.1128/mcb.11.2.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Windmueller H. G., Herbert P. N., Levy R. I. Biosynthesis of lymph and plasma lipoprotein apoproteins by isolated perfused rat liver and intestine. J Lipid Res. 1973 Mar;14(2):215–223. [PubMed] [Google Scholar]
- Windmueller H. G., Wu A. L. Biosynthesis of plasma apolipoproteins by rat small intestine without dietary or biliary fat. J Biol Chem. 1981 Mar 25;256(6):3012–3016. [PubMed] [Google Scholar]
- Wu A. L., Windmueller H. G. Relative contributions by liver and intestine to individual plasma apolipoproteins in the rat. J Biol Chem. 1979 Aug 10;254(15):7316–7322. [PubMed] [Google Scholar]
- Yang W. S., Nevin D. N., Peng R., Brunzell J. D., Deeb S. S. A mutation in the promoter of the lipoprotein lipase (LPL) gene in a patient with familial combined hyperlipidemia and low LPL activity. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4462–4466. doi: 10.1073/pnas.92.10.4462. [DOI] [PMC free article] [PubMed] [Google Scholar]
