Abstract
We examined if endogenous endothelins mediate the decreased HCO3 secretion and increased H+ secretion in in vivo-perfused distal tubules of rats fed dietary acid as (NH4)2SO4. Animals given (NH4)2SO4 drinking solution had higher endothelin-1 addition to renal interstitial fluid than those given distilled H2O (480+/-51 vs. 293+/-32 fmol g kidney wt(-1) min(-1), respectively, P < 0.03). (NH4)2SO4-ingesting animals infused with bosentan (10 mg/kg) to inhibit A- and B-type endothelin receptors had higher HCO3 secretion than baseline (NH4)2SO4 animals (-4.7+/-0.4 vs. -2.4+/-0.3 pmol mm(-1) min(-1), P < 0.01), but (NH4)2SO4 animals given a specific inhibitor of A-type endothelin receptors (BQ-123) did not (-2.0+/-0.2 pmol mm(-1) min(-1), P = NS vs. baseline). H+ secretion was lower in bosentan-infused compared with baseline (NH4)2SO4 animals (27.7+/-2.5 vs. 43.9+/-4.0 pmol mm(-1) min(-1), P < 0.03), but that for BQ-123-infused (NH4)2SO4 animals was not (42.9+/-4.2 pmol mm(-1) min(-1), P = NS vs. baseline). Bosentan had no effect on distal tubule HCO3 or H+ secretion in control animals. The data show that dietary acid increases endothelin-1 addition to renal interstitial fluid and that inhibition of B- but not A-type endothelin receptors blunts the decreased HCO3 secretion and increased H+ secretion in the distal tubule of animals given dietary acid. The data are consistent with endogenous endothelins as mediators of increased distal tubule acidification induced by dietary acid.
Full Text
The Full Text of this article is available as a PDF (215.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benigni A., Perico N., Gaspari F., Zoja C., Bellizzi L., Gabanelli M., Remuzzi G. Increased renal endothelin production in rats with reduced renal mass. Am J Physiol. 1991 Mar;260(3 Pt 2):F331–F339. doi: 10.1152/ajprenal.1991.260.3.F331. [DOI] [PubMed] [Google Scholar]
- Breyer M. D., Kokko J. P., Jacobson H. R. Regulation of net bicarbonate transport in rabbit cortical collecting tubule by peritubular pH, carbon dioxide tension, and bicarbonate concentration. J Clin Invest. 1986 May;77(5):1650–1660. doi: 10.1172/JCI112482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buerkert J., Martin D., Trigg D. Segmental analysis of the renal tubule in buffer production and net acid formation. Am J Physiol. 1983 Apr;244(4):F442–F454. doi: 10.1152/ajprenal.1983.244.4.F442. [DOI] [PubMed] [Google Scholar]
- Capasso G., Kinne R., Malnic G., Giebisch G. Renal bicarbonate reabsorption in the rat. I. Effects of hypokalemia and carbonic anhydrase. J Clin Invest. 1986 Dec;78(6):1558–1567. doi: 10.1172/JCI112748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan Y. L., Malnic G., Giebisch G. Renal bicarbonate reabsorption in the rat. III. Distal tubule perfusion study of load dependence and bicarbonate permeability. J Clin Invest. 1989 Sep;84(3):931–938. doi: 10.1172/JCI114255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chu T. S., Peng Y., Cano A., Yanagisawa M., Alpern R. J. Endothelin(B) receptor activates NHE-3 by a Ca2+-dependent pathway in OKP cells. J Clin Invest. 1996 Mar 15;97(6):1454–1462. doi: 10.1172/JCI118567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clozel M., Breu V., Gray G. A., Kalina B., Löffler B. M., Burri K., Cassal J. M., Hirth G., Müller M., Neidhart W. Pharmacological characterization of bosentan, a new potent orally active nonpeptide endothelin receptor antagonist. J Pharmacol Exp Ther. 1994 Jul;270(1):228–235. [PubMed] [Google Scholar]
- Crayen M. L., Thoenes W. Architecture and cell structures in the distal nephron of the rat kidney. Cytobiologie. 1978 Jun;17(1):197–211. [PubMed] [Google Scholar]
- Eiam-Ong S., Hilden S. A., King A. J., Johns C. A., Madias N. E. Endothelin-1 stimulates the Na+/H+ and Na+/HCO3- transporters in rabbit renal cortex. Kidney Int. 1992 Jul;42(1):18–24. doi: 10.1038/ki.1992.255. [DOI] [PubMed] [Google Scholar]
- Emmons C., Stokes J. B. Cellular actions of cAMP on HCO3(-)-secreting cells of rabbit CCD: dependence on in vivo acid-base status. Am J Physiol. 1994 Apr;266(4 Pt 2):F528–F535. doi: 10.1152/ajprenal.1994.266.4.F528. [DOI] [PubMed] [Google Scholar]
- Garcia-Austt J., Good D. W., Burg M. B., Knepper M. A. Deoxycorticosterone-stimulated bicarbonate secretion in rabbit cortical collecting ducts: effects of luminal chloride removal and in vivo acid loading. Am J Physiol. 1985 Aug;249(2 Pt 2):F205–F212. doi: 10.1152/ajprenal.1985.249.2.F205. [DOI] [PubMed] [Google Scholar]
- Garvin J., Sanders K. Endothelin inhibits fluid and bicarbonate transport in part by reducing Na+/K+ ATPase activity in the rat proximal straight tubule. J Am Soc Nephrol. 1991 Nov;2(5):976–982. doi: 10.1681/ASN.V25976. [DOI] [PubMed] [Google Scholar]
- Horie S., Moe O., Tejedor A., Alpern R. J. Preincubation in acid medium increases Na/H antiporter activity in cultured renal proximal tubule cells. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4742–4745. doi: 10.1073/pnas.87.12.4742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iacovitti M., Nash L., Peterson L. N., Rochon J., Levine D. Z. Distal tubule bicarbonate accumulation in vivo. Effect of flow and transtubular bicarbonate gradients. J Clin Invest. 1986 Dec;78(6):1658–1665. doi: 10.1172/JCI112759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ihara M., Noguchi K., Saeki T., Fukuroda T., Tsuchida S., Kimura S., Fukami T., Ishikawa K., Nishikibe M., Yano M. Biological profiles of highly potent novel endothelin antagonists selective for the ETA receptor. Life Sci. 1992;50(4):247–255. doi: 10.1016/0024-3205(92)90331-i. [DOI] [PubMed] [Google Scholar]
- Kivlighn S. D., Gabel R. A., Siegl P. K. Effects of BQ-123 on renal function and acute cyclosporine-induced renal dysfunction. Kidney Int. 1994 Jan;45(1):131–136. doi: 10.1038/ki.1994.15. [DOI] [PubMed] [Google Scholar]
- Knepper M. A., Good D. W., Burg M. B. Ammonia and bicarbonate transport by rat cortical collecting ducts perfused in vitro. Am J Physiol. 1985 Dec;249(6 Pt 2):F870–F877. doi: 10.1152/ajprenal.1985.249.6.F870. [DOI] [PubMed] [Google Scholar]
- Knepper M. A., Packer R., Good D. W. Ammonium transport in the kidney. Physiol Rev. 1989 Jan;69(1):179–249. doi: 10.1152/physrev.1989.69.1.179. [DOI] [PubMed] [Google Scholar]
- Kohan D. E. Endothelin synthesis by rabbit renal tubule cells. Am J Physiol. 1991 Aug;261(2 Pt 2):F221–F226. doi: 10.1152/ajprenal.1991.261.2.F221. [DOI] [PubMed] [Google Scholar]
- Korbmacher C., Boulpaep E. L., Giebisch G., Geibel J. Endothelin increases [Ca2+]i in M-1 mouse cortical collecting duct cells by a dual mechanism. Am J Physiol. 1993 Aug;265(2 Pt 1):C349–C357. doi: 10.1152/ajpcell.1993.265.2.C349. [DOI] [PubMed] [Google Scholar]
- Kunau R. T., Jr, Walker K. A. Total CO2 absorption in the distal tubule of the rat. Am J Physiol. 1987 Mar;252(3 Pt 2):F468–F473. doi: 10.1152/ajprenal.1987.252.3.F468. [DOI] [PubMed] [Google Scholar]
- Levine D. Z. An in vivo microperfusion study of distal tubule bicarbonate reabsorption in normal and ammonium chloride rats. J Clin Invest. 1985 Feb;75(2):588–595. doi: 10.1172/JCI111735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine D. Z., Iacovitti M., Nash L., Vandorpe D. Secretion of bicarbonate by rat distal tubules in vivo. Modulation by overnight fasting. J Clin Invest. 1988 Jun;81(6):1873–1878. doi: 10.1172/JCI113533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine D. Z., Jacobson H. R. The regulation of renal acid secretion: new observations from studies of distal nephron segments. Kidney Int. 1986 Jun;29(6):1099–1109. doi: 10.1038/ki.1986.114. [DOI] [PubMed] [Google Scholar]
- Lucci M. S., Pucacco L. R., Carter N. W., DuBose T. D., Jr Evaluation of bicarbonate transport in rat distal tubule: effects of acid-base status. Am J Physiol. 1982 Oct;243(4):F335–F341. doi: 10.1152/ajprenal.1982.243.4.F335. [DOI] [PubMed] [Google Scholar]
- Marsen T. A., Schramek H., Dunn M. J. Renal actions of endothelin: linking cellular signaling pathways to kidney disease. Kidney Int. 1994 Feb;45(2):336–344. doi: 10.1038/ki.1994.43. [DOI] [PubMed] [Google Scholar]
- McKinney T. D., Davidson K. K. Effects of respiratory acidosis on HCO3- transport by rabbit collecting tubules. Am J Physiol. 1988 Oct;255(4 Pt 2):F656–F665. doi: 10.1152/ajprenal.1988.255.4.F656. [DOI] [PubMed] [Google Scholar]
- Neuser D., Zaiss S., Stasch J. P. Endothelin receptors in cultured renal epithelial cells. Eur J Pharmacol. 1990 Feb 6;176(2):241–243. doi: 10.1016/0014-2999(90)90536-f. [DOI] [PubMed] [Google Scholar]
- Simonson M. S., Wann S., Mené P., Dubyak G. R., Kester M., Nakazato Y., Sedor J. R., Dunn M. J. Endothelin stimulates phospholipase C, Na+/H+ exchange, c-fos expression, and mitogenesis in rat mesangial cells. J Clin Invest. 1989 Feb;83(2):708–712. doi: 10.1172/JCI113935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siragy H. M., Ibrahim M. M., Jaffa A. A., Mayfield R., Margolius H. S. Rat renal interstitial bradykinin, prostaglandin E2, and cyclic guanosine 3',5'-monophosphate. Effects of altered sodium intake. Hypertension. 1994 Jun;23(6 Pt 2):1068–1070. doi: 10.1161/01.hyp.23.6.1068. [DOI] [PubMed] [Google Scholar]
- Star R. A. Quantitation of total carbon dioxide in nanoliter samples by flow-through fluorometry. Am J Physiol. 1990 Feb;258(2 Pt 2):F429–F432. doi: 10.1152/ajprenal.1990.258.2.F429. [DOI] [PubMed] [Google Scholar]
- Terada Y., Tomita K., Nonoguchi H., Marumo F. Different localization of two types of endothelin receptor mRNA in microdissected rat nephron segments using reverse transcription and polymerase chain reaction assay. J Clin Invest. 1992 Jul;90(1):107–112. doi: 10.1172/JCI115822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomita K., Nonoguchi H., Marumo F. Effects of endothelin on peptide-dependent cyclic adenosine monophosphate accumulation along the nephron segments of the rat. J Clin Invest. 1990 Jun;85(6):2014–2018. doi: 10.1172/JCI114667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsukahara H., Ende H., Magazine H. I., Bahou W. F., Goligorsky M. S. Molecular and functional characterization of the non-isopeptide-selective ETB receptor in endothelial cells. Receptor coupling to nitric oxide synthase. J Biol Chem. 1994 Aug 26;269(34):21778–21785. [PubMed] [Google Scholar]
- Uchida S., Takemoto F., Ogata E., Kurokawa K. Detection of endothelin-1 mRNA by RT-PCR in isolated rat renal tubules. Biochem Biophys Res Commun. 1992 Oct 15;188(1):108–113. doi: 10.1016/0006-291x(92)92356-3. [DOI] [PubMed] [Google Scholar]
- Veis J. H., Dillingham M. A., Berl T. Effects of prostacyclin on the cAMP system in cultured rat inner medullary collecting duct cells. Am J Physiol. 1990 May;258(5 Pt 2):F1218–F1223. doi: 10.1152/ajprenal.1990.258.5.F1218. [DOI] [PubMed] [Google Scholar]
- Wang T., Malnic G., Giebisch G., Chan Y. L. Renal bicarbonate reabsorption in the rat. IV. Bicarbonate transport mechanisms in the early and late distal tubule. J Clin Invest. 1993 Jun;91(6):2776–2784. doi: 10.1172/JCI116519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinman E. J., Shenolikar S., Kahn A. M. cAMP-associated inhibition of Na+-H+ exchanger in rabbit kidney brush-border membranes. Am J Physiol. 1987 Jan;252(1 Pt 2):F19–F25. doi: 10.1152/ajprenal.1987.252.1.F19. [DOI] [PubMed] [Google Scholar]
- Wesson D. E. Depressed distal tubule acidification corrects chloride-deplete alkalosis in rats. Am J Physiol. 1990 Oct;259(4 Pt 2):F636–F644. doi: 10.1152/ajprenal.1990.259.4.F636. [DOI] [PubMed] [Google Scholar]
- Wesson D. E. Dietary HCO3 reduces distal tubule acidification by increasing cellular HCO3 secretion. Am J Physiol. 1996 Jul;271(1 Pt 2):F132–F142. doi: 10.1152/ajprenal.1996.271.1.F132. [DOI] [PubMed] [Google Scholar]
- Wesson D. E. Dietary bicarbonate reduces rat distal nephron acidification evaluated in situ. Am J Physiol. 1990 Apr;258(4 Pt 2):F870–F876. doi: 10.1152/ajprenal.1990.258.4.F870. [DOI] [PubMed] [Google Scholar]
- Wesson D. E., Dolson G. M. Augmented bidirectional HCO3 transport by rat distal tubules in chronic alkalosis. Am J Physiol. 1991 Aug;261(2 Pt 2):F308–F317. doi: 10.1152/ajprenal.1991.261.2.F308. [DOI] [PubMed] [Google Scholar]
- Wesson D. E., Dolson G. M. Maximal proton secretory rate of rat distal tubules is higher during chronic metabolic alkalosis. Am J Physiol. 1991 Nov;261(5 Pt 2):F753–F759. doi: 10.1152/ajprenal.1991.261.5.F753. [DOI] [PubMed] [Google Scholar]
- Wesson D. E. Prostacyclin increases distal tubule HCO3 secretion in the rat. Am J Physiol. 1996 Dec;271(6 Pt 2):F1183–F1192. doi: 10.1152/ajprenal.1996.271.6.F1183. [DOI] [PubMed] [Google Scholar]
- Wesson D. E. Reduced bicarbonate secretion mediates increased distal tubule acidification induced by dietary acid. Am J Physiol. 1996 Sep;271(3 Pt 2):F670–F678. doi: 10.1152/ajprenal.1996.271.3.F670. [DOI] [PubMed] [Google Scholar]
- Wilkes B. M., Susin M., Mento P. F., Macica C. M., Girardi E. P., Boss E., Nord E. P. Localization of endothelin-like immunoreactivity in rat kidneys. Am J Physiol. 1991 Jun;260(6 Pt 2):F913–F920. doi: 10.1152/ajprenal.1991.260.6.F913. [DOI] [PubMed] [Google Scholar]
- Zeiler M., Löffler B. M., Bock H. A., Thiel G. ET-1 excretion is urine flow-dependent in kidney donors and transplant recipients. J Cardiovasc Pharmacol. 1995;26 (Suppl 3):S513–S515. [PubMed] [Google Scholar]