Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jun 1;99(11):2701–2709. doi: 10.1172/JCI119459

Early effects of iodine deficiency on radial glial cells of the hippocampus of the rat fetus. A model of neurological cretinism.

J R Martínez-Galán 1, P Pedraza 1, M Santacana 1, F Escobar del Ray 1, G Morreale de Escobar 1, A Ruiz-Marcos 1
PMCID: PMC508116  PMID: 9169500

Abstract

The most severe brain damage associated with thyroid dysfunction during development is observed in neurological cretins from areas with marked iodine deficiency. The damage is irreversible by birth and related to maternal hypothyroxinemia before mid gestation. However, direct evidence of this etiopathogenic mechanism is lacking. Rats were fed diets with a very low iodine content (LID), or LID supplemented with KI. Other rats were fed the breeding diet with a normal iodine content plus a goitrogen, methimazole (MMI). The concentrations of -thyroxine (T4) and 3,5,3'triiodo--thyronine (T3) were determined in the brain of 21-d-old fetuses. The proportion of radial glial cell fibers expressing nestin and glial fibrillary acidic protein was determined in the CA1 region of the hippocampus. T4 and T3 were decreased in the brain of the LID and MMI fetuses, as compared to their respective controls. The number of immature glial cell fibers, expressing nestin, was not affected, but the proportion of mature glial cell fibers, expressing glial fibrillary acidic protein, was significantly decreased by both LID and MMI treatment of the dams. These results show impaired maturation of cells involved in neuronal migration in the hippocampus, a region known to be affected in cretinism, at a stage of development equivalent to mid gestation in humans. The impairment is related to fetal cerebral thyroid hormone deficiency during a period of development when maternal thyroxinemia is believed to play an important role.

Full Text

The Full Text of this article is available as a PDF (643.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman J., Bayer S. A. Prolonged sojourn of developing pyramidal cells in the intermediate zone of the hippocampus and their settling in the stratum pyramidale. J Comp Neurol. 1990 Nov 15;301(3):343–364. doi: 10.1002/cne.903010303. [DOI] [PubMed] [Google Scholar]
  2. Bernal J., Nunez J. Thyroid hormones and brain development. Eur J Endocrinol. 1995 Oct;133(4):390–398. doi: 10.1530/eje.0.1330390. [DOI] [PubMed] [Google Scholar]
  3. Bernal J., Pekonen F. Ontogenesis of the nuclear 3,5,3'-triiodothyronine receptor in the human fetal brain. Endocrinology. 1984 Feb;114(2):677–679. doi: 10.1210/endo-114-2-677. [DOI] [PubMed] [Google Scholar]
  4. Bonet B., Herrera E. Different response to maternal hypothyroidism during the first and second half of gestation in the rat. Endocrinology. 1988 Feb;122(2):450–455. doi: 10.1210/endo-122-2-450. [DOI] [PubMed] [Google Scholar]
  5. Boyages S. C., Halpern J. P. Endemic cretinism: toward a unifying hypothesis. Thyroid. 1993 Spring;3(1):59–69. doi: 10.1089/thy.1993.3.59. [DOI] [PubMed] [Google Scholar]
  6. Bradley D. J., Towle H. C., Young W. S., 3rd Alpha and beta thyroid hormone receptor (TR) gene expression during auditory neurogenesis: evidence for TR isoform-specific transcriptional regulation in vivo. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):439–443. doi: 10.1073/pnas.91.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bradley D. J., Towle H. C., Young W. S., 3rd Spatial and temporal expression of alpha- and beta-thyroid hormone receptor mRNAs, including the beta 2-subtype, in the developing mammalian nervous system. J Neurosci. 1992 Jun;12(6):2288–2302. doi: 10.1523/JNEUROSCI.12-06-02288.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. CHOUFOER J. C., VANRHIJN M., QUERIDO A. ENDEMIC GOITER IN WESTERN NEW GUINEA. II. CLINICAL PICTURE, INCIDENCE AND PATHOGENESIS OF ENDEMIC CRETINISM. J Clin Endocrinol Metab. 1965 Mar;25:385–402. doi: 10.1210/jcem-25-3-385. [DOI] [PubMed] [Google Scholar]
  9. Calvo R., Obregón M. J., Ruiz de Oña C., Escobar del Rey F., Morreale de Escobar G. Congenital hypothyroidism, as studied in rats. Crucial role of maternal thyroxine but not of 3,5,3'-triiodothyronine in the protection of the fetal brain. J Clin Invest. 1990 Sep;86(3):889–899. doi: 10.1172/JCI114790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cameron R. S., Rakic P. Glial cell lineage in the cerebral cortex: a review and synthesis. Glia. 1991;4(2):124–137. doi: 10.1002/glia.440040204. [DOI] [PubMed] [Google Scholar]
  11. Cao X. Y., Jiang X. M., Dou Z. H., Rakeman M. A., Zhang M. L., O'Donnell K., Ma T., Amette K., DeLong N., DeLong G. R. Timing of vulnerability of the brain to iodine deficiency in endemic cretinism. N Engl J Med. 1994 Dec 29;331(26):1739–1744. doi: 10.1056/NEJM199412293312603. [DOI] [PubMed] [Google Scholar]
  12. Contempré B., Jauniaux E., Calvo R., Jurkovic D., Campbell S., de Escobar G. M. Detection of thyroid hormones in human embryonic cavities during the first trimester of pregnancy. J Clin Endocrinol Metab. 1993 Dec;77(6):1719–1722. doi: 10.1210/jcem.77.6.8263162. [DOI] [PubMed] [Google Scholar]
  13. Culican S. M., Baumrind N. L., Yamamoto M., Pearlman A. L. Cortical radial glia: identification in tissue culture and evidence for their transformation to astrocytes. J Neurosci. 1990 Feb;10(2):684–692. doi: 10.1523/JNEUROSCI.10-02-00684.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. DeLong G. R. Effects of nutrition on brain development in humans. Am J Clin Nutr. 1993 Feb;57(2 Suppl):286S–290S. doi: 10.1093/ajcn/57.2.286S. [DOI] [PubMed] [Google Scholar]
  15. Dussault J. H., Ruel J. Thyroid hormones and brain development. Annu Rev Physiol. 1987;49:321–334. doi: 10.1146/annurev.ph.49.030187.001541. [DOI] [PubMed] [Google Scholar]
  16. Escobar del Rey F., Mallol J., Pastor R., Morreale de Escobar G. Effects of maternal iodine deficiency on thyroid hormone economy of lactating dams and pups: maintenance of normal cerebral 3,5,3'-triiodo-L-thyronine concentrations in pups during major phases of brain development. Endocrinology. 1987 Aug;121(2):803–811. doi: 10.1210/endo-121-2-803. [DOI] [PubMed] [Google Scholar]
  17. Escobar del Rey F., Pastor R., Mallol J., Morreale de Escobar G. Effects of maternal iodine deficiency on the L-thyroxine and 3,5,3'-triiodo-L-thyronine contents of rat embryonic tissues before and after onset of fetal thyroid function. Endocrinology. 1986 Apr;118(4):1259–1265. doi: 10.1210/endo-118-4-1259. [DOI] [PubMed] [Google Scholar]
  18. Ferreiro B., Bernal J., Goodyer C. G., Branchard C. L. Estimation of nuclear thyroid hormone receptor saturation in human fetal brain and lung during early gestation. J Clin Endocrinol Metab. 1988 Oct;67(4):853–856. doi: 10.1210/jcem-67-4-853. [DOI] [PubMed] [Google Scholar]
  19. Fisher D. A., Klein A. H. Thyroid development and disorders of thyroid function in the newborn. N Engl J Med. 1981 Mar 19;304(12):702–712. doi: 10.1056/NEJM198103193041205. [DOI] [PubMed] [Google Scholar]
  20. Gould E., Frankfurt M., Westlind-Danielsson A., McEwen B. S. Developing forebrain astrocytes are sensitive to thyroid hormone. Glia. 1990;3(4):283–292. doi: 10.1002/glia.440030408. [DOI] [PubMed] [Google Scholar]
  21. Halpern J. P., Boyages S. C., Maberly G. F., Collins J. K., Eastman C. J., Morris J. G. The neurology of endemic cretinism. A study of two endemias. Brain. 1991 Apr;114(Pt 2):825–841. doi: 10.1093/brain/114.2.825. [DOI] [PubMed] [Google Scholar]
  22. Hetzel B. S. Iodine deficiency disorders (IDD) and their eradication. Lancet. 1983 Nov 12;2(8359):1126–1129. doi: 10.1016/s0140-6736(83)90636-0. [DOI] [PubMed] [Google Scholar]
  23. Hockfield S., McKay R. D. Identification of major cell classes in the developing mammalian nervous system. J Neurosci. 1985 Dec;5(12):3310–3328. doi: 10.1523/JNEUROSCI.05-12-03310.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Illig R., Largo R. H., Qin Q., Torresani T., Rochiccioli P., Larsson A. Mental development in congenital hypothyroidism after neonatal screening. Arch Dis Child. 1987 Oct;62(10):1050–1055. doi: 10.1136/adc.62.10.1050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Karmarkar M. G., Prabarkaran D., Godbole M. M. 5'-Monodeiodinase activity in developing human cerebral cortex. Am J Clin Nutr. 1993 Feb;57(2 Suppl):291S–294S. doi: 10.1093/ajcn/57.2.291S. [DOI] [PubMed] [Google Scholar]
  26. Mano M. T., Potter B. J., Belling G. B., Chavadej J., Hetzel B. S. Fetal brain development in response to iodine deficiency in a primate model (Callithrix jacchus jacchus). J Neurol Sci. 1987 Jul;79(3):287–300. doi: 10.1016/0022-510x(87)90236-x. [DOI] [PubMed] [Google Scholar]
  27. McCall M. A., Gregg R. G., Behringer R. R., Brenner M., Delaney C. L., Galbreath E. J., Zhang C. L., Pearce R. A., Chiu S. Y., Messing A. Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6361–6366. doi: 10.1073/pnas.93.13.6361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mellström B., Naranjo J. R., Santos A., Gonzalez A. M., Bernal J. Independent expression of the alpha and beta c-erbA genes in developing rat brain. Mol Endocrinol. 1991 Sep;5(9):1339–1350. doi: 10.1210/mend-5-9-1339. [DOI] [PubMed] [Google Scholar]
  29. Miller M. W., Robertson S. Prenatal exposure to ethanol alters the postnatal development and transformation of radial glia to astrocytes in the cortex. J Comp Neurol. 1993 Nov 8;337(2):253–266. doi: 10.1002/cne.903370206. [DOI] [PubMed] [Google Scholar]
  30. Morreale de Escobar G., Obregón M. J., Calvo R., Escobar del Rey F. Effects of iodine deficiency on thyroid hormone metabolism and the brain in fetal rats: the role of the maternal transfer of thyroxin. Am J Clin Nutr. 1993 Feb;57(2 Suppl):280S–285S. doi: 10.1093/ajcn/57.2.280S. [DOI] [PubMed] [Google Scholar]
  31. Morreale de Escobar G., Pastor R., Obregon M. J., Escobar del Rey F. Effects of maternal hypothyroidism on the weight and thyroid hormone content of rat embryonic tissues, before and after onset of fetal thyroid function. Endocrinology. 1985 Nov;117(5):1890–1900. doi: 10.1210/endo-117-5-1890. [DOI] [PubMed] [Google Scholar]
  32. Obregón M. J., Ruiz de Oña C., Calvo R., Escobar del Rey F., Morreale de Escobar G. Outer ring iodothyronine deiodinases and thyroid hormone economy: responses to iodine deficiency in the rat fetus and neonate. Endocrinology. 1991 Nov;129(5):2663–2673. doi: 10.1210/endo-129-5-2663. [DOI] [PubMed] [Google Scholar]
  33. Perez-Castillo A., Bernal J., Ferreiro B., Pans T. The early ontogenesis of thyroid hormone receptor in the rat fetus. Endocrinology. 1985 Dec;117(6):2457–2461. doi: 10.1210/endo-117-6-2457. [DOI] [PubMed] [Google Scholar]
  34. Pharaoh P. O., Lawton N. F., Ellis S. M., Williams E. S., Ekins R. P. The role of triiodothyronine (T3) in the maintenance of euthyroidism in endemic goitre. Clin Endocrinol (Oxf) 1973 Jul;2(3):193–199. doi: 10.1111/j.1365-2265.1973.tb00419.x. [DOI] [PubMed] [Google Scholar]
  35. Pharoah P. O., Buttfield I. H., Hetzel B. S. Neurological damage to the fetus resulting from severe iodine deficiency during pregnancy. Lancet. 1971 Feb 13;1(7694):308–310. doi: 10.1016/s0140-6736(71)91040-3. [DOI] [PubMed] [Google Scholar]
  36. Pharoah P. O., Ellis S. M., Ekins R. P., Williams E. S. Maternal thyroid function, iodine deficiency and fetal development. Clin Endocrinol (Oxf) 1976 Mar;5(2):159–166. doi: 10.1111/j.1365-2265.1976.tb02827.x. [DOI] [PubMed] [Google Scholar]
  37. Potter B. J., Mano M. T., Belling G. B., McIntosh G. H., Hua C., Cragg B. G., Marshall J., Wellby M. L., Hetzel B. S. Retarded fetal brain development resulting from severe dietary iodine deficiency in sheep. Neuropathol Appl Neurobiol. 1982 Jul-Aug;8(4):303–313. doi: 10.1111/j.1365-2990.1982.tb00299.x. [DOI] [PubMed] [Google Scholar]
  38. Rakic P., Nowakowski R. S. The time of origin of neurons in the hippocampal region of the rhesus monkey. J Comp Neurol. 1981 Feb 10;196(1):99–128. doi: 10.1002/cne.901960109. [DOI] [PubMed] [Google Scholar]
  39. Rami A., Rabié A. Effect of thyroid deficiency on the development of glia in the hippocampal formation of the rat: an immunocytochemical study. Glia. 1988;1(5):337–345. doi: 10.1002/glia.440010506. [DOI] [PubMed] [Google Scholar]
  40. Ruiz de Oña C., Obregón M. J., Escobar del Rey F., Morreale de Escobar G. Developmental changes in rat brain 5'-deiodinase and thyroid hormones during the fetal period: the effects of fetal hypothyroidism and maternal thyroid hormones. Pediatr Res. 1988 Nov;24(5):588–594. doi: 10.1203/00006450-198811000-00010. [DOI] [PubMed] [Google Scholar]
  41. Ruiz-Marcos A., Sanchez-Toscano F., Escobar del Rey F., Morreale de Escobar G. Severe hypothyroidism and the maturation of the rat cerebral cortex. Brain Res. 1979 Feb 23;162(2):315–329. doi: 10.1016/0006-8993(79)90292-0. [DOI] [PubMed] [Google Scholar]
  42. Ruiz-Marcos A., Sánchez-Toscano F., Escobar del Rey F., Morreale de Escobar G. Reversible morphological alterations of cortical neurons in juvenile and adult hypothyroidism in the rat. Brain Res. 1980 Mar 3;185(1):91–102. doi: 10.1016/0006-8993(80)90674-5. [DOI] [PubMed] [Google Scholar]
  43. Stagaard Janas M., Nowakowski R. S., Møllgård K. Glial cell differentiation in neuron-free and neuron-rich regions. II. Early appearance of S-100 protein positive astrocytes in human fetal hippocampus. Anat Embryol (Berl) 1991;184(6):559–569. doi: 10.1007/BF00942578. [DOI] [PubMed] [Google Scholar]
  44. Sternberger L. A., Hardy P. H., Jr, Cuculis J. J., Meyer H. G. The unlabeled antibody enzyme method of immunohistochemistry: preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem. 1970 May;18(5):315–333. doi: 10.1177/18.5.315. [DOI] [PubMed] [Google Scholar]
  45. Stichel C. C., Müller C. M., Zilles K. Distribution of glial fibrillary acidic protein and vimentin immunoreactivity during rat visual cortex development. J Neurocytol. 1991 Feb;20(2):97–108. doi: 10.1007/BF01279614. [DOI] [PubMed] [Google Scholar]
  46. Van Middlesworth L. Audiogenic seizures in rats after severe prenatal and perinatal iodine depletion. Endocrinology. 1977 Jan;100(1):242–245. doi: 10.1210/endo-100-1-242. [DOI] [PubMed] [Google Scholar]
  47. Vega-Núez E., Menéndez-Hurtado A., Garesse R., Santos A., Perez-Castillo A. Thyroid hormone-regulated brain mitochondrial genes revealed by differential cDNA cloning. J Clin Invest. 1995 Aug;96(2):893–899. doi: 10.1172/JCI118136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Vulsma T., Gons M. H., de Vijlder J. J. Maternal-fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect or thyroid agenesis. N Engl J Med. 1989 Jul 6;321(1):13–16. doi: 10.1056/NEJM198907063210103. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES