Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 15;100(6):1590–1595. doi: 10.1172/JCI119683

Disruption of the guanylyl cyclase-C gene leads to a paradoxical phenotype of viable but heat-stable enterotoxin-resistant mice.

S Schulz 1, M J Lopez 1, M Kuhn 1, D L Garbers 1
PMCID: PMC508341  PMID: 9294128

Abstract

Heat-stable enterotoxins (STa), which cause an acute secretory diarrhea, have been suggested to mediate their actions through the guanylyl cyclase-C (GC-C) receptor. The GC-C gene was disrupted by insertion of neo into exon 1 and subsequent homologous recombination. GC-C null mice contained no detectable GC-C protein. Intestine mucosal guanylyl cyclase activity was approximately 16-fold higher in wild-type mice than in the GC-C null mice, and STa-stimulable guanylyl cyclase activity was absent in the null animals. Thus, GC-C is the major cyclase activity present in the intestine, and also completely accounts for the STa-induced elevations of cGMP. Gavage with STa resulted in marked fluid accumulation within the intestine of wild-type and heterozygous suckling mice, but GC-C null animals were resistant. In addition, infection with enterotoxigenic bacteria that produce STa led to diarrhea and death in wild-type and heterozygous mice, while the null mice were protected. Cholera toxin, in contrast, continued to cause diarrhea in GC-C null mice, demonstrating that the cAMP signaling pathway remained intact. Markedly different diets (high carbohydrate, fat, or protein) or the inclusion of high salt (K+, Na+) in the drinking water or diet also did not severely affect the null animals. Given that GC-C is a major intestinal receptor in all mammals, the pressure to retain a functional GC-C in the face of diarrhea-inflicted mortality remains unexplained. Therefore, GC-C likely provides a protective effect against stressors not yet tested, possibly pathogens other than noninvasive enterotoxigenic bacteria.

Full Text

The Full Text of this article is available as a PDF (191.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arduino R. C., DuPont H. L. Travellers' diarrhoea. Baillieres Clin Gastroenterol. 1993 Jun;7(2):365–385. doi: 10.1016/0950-3528(93)90046-u. [DOI] [PubMed] [Google Scholar]
  2. Carpick B. W., Gariépy J. The Escherichia coli heat-stable enterotoxin is a long-lived superagonist of guanylin. Infect Immun. 1993 Nov;61(11):4710–4715. doi: 10.1128/iai.61.11.4710-4715.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carrithers S. L., Barber M. T., Biswas S., Parkinson S. J., Park P. K., Goldstein S. D., Waldman S. A. Guanylyl cyclase C is a selective marker for metastatic colorectal tumors in human extraintestinal tissues. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14827–14832. doi: 10.1073/pnas.93.25.14827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chao A. C., de Sauvage F. J., Dong Y. J., Wagner J. A., Goeddel D. V., Gardner P. Activation of intestinal CFTR Cl- channel by heat-stable enterotoxin and guanylin via cAMP-dependent protein kinase. EMBO J. 1994 Mar 1;13(5):1065–1072. doi: 10.1002/j.1460-2075.1994.tb06355.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Currie M. G., Fok K. F., Kato J., Moore R. J., Hamra F. K., Duffin K. L., Smith C. E. Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):947–951. doi: 10.1073/pnas.89.3.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Domino S. E., Tubb D. J., Garbers D. L. Assay of guanylyl cyclase catalytic activity. Methods Enzymol. 1991;195:345–355. doi: 10.1016/0076-6879(91)95179-n. [DOI] [PubMed] [Google Scholar]
  7. Duchet-Suchaux M., Le Maitre C., Bertin A. Differences in susceptibility of inbred and outbred infant mice to enterotoxigenic Escherichia coli of bovine, porcine and human origin. J Med Microbiol. 1990 Mar;31(3):185–190. doi: 10.1099/00222615-31-3-185. [DOI] [PubMed] [Google Scholar]
  8. Field M., Graf L. H., Jr, Laird W. J., Smith P. L. Heat-stable enterotoxin of Escherichia coli: in vitro effects on guanylate cyclase activity, cyclic GMP concentration, and ion transport in small intestine. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2800–2804. doi: 10.1073/pnas.75.6.2800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Forte L. R., Eber S. L., Turner J. T., Freeman R. H., Fok K. F., Currie M. G. Guanylin stimulation of Cl- secretion in human intestinal T84 cells via cyclic guanosine monophosphate. J Clin Invest. 1993 Jun;91(6):2423–2428. doi: 10.1172/JCI116476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. French P. J., Bijman J., Edixhoven M., Vaandrager A. B., Scholte B. J., Lohmann S. M., Nairn A. C., de Jonge H. R. Isotype-specific activation of cystic fibrosis transmembrane conductance regulator-chloride channels by cGMP-dependent protein kinase II. J Biol Chem. 1995 Nov 3;270(44):26626–26631. doi: 10.1074/jbc.270.44.26626. [DOI] [PubMed] [Google Scholar]
  11. Gao Z., Yuen P. S., Garbers D. L. Interruption of specific guanylyl cyclase signaling pathways. Adv Second Messenger Phosphoprotein Res. 1997;31:183–190. doi: 10.1016/s1040-7952(97)80018-3. [DOI] [PubMed] [Google Scholar]
  12. Garbers D. L. Guanylyl cyclase receptors and their endocrine, paracrine, and autocrine ligands. Cell. 1992 Oct 2;71(1):1–4. doi: 10.1016/0092-8674(92)90258-e. [DOI] [PubMed] [Google Scholar]
  13. Giannella R. A. Suckling mouse model for detection of heat-stable Escherichia coli enterotoxin: characteristics of the model. Infect Immun. 1976 Jul;14(1):95–99. doi: 10.1128/iai.14.1.95-99.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Guerrant R. L., Hughes J. M., Chang B., Robertson D. C., Murad F. Activation of intestinal guanylate cyclase by heat-stable enterotoxin of Escherichia coli: studies of tissue specificity, potential receptors, and intermediates. J Infect Dis. 1980 Aug;142(2):220–228. doi: 10.1093/infdis/142.2.220. [DOI] [PubMed] [Google Scholar]
  15. Guerrant R. L., Hughes J. M., Chang B., Robertson D. C., Murad F. Activation of intestinal guanylate cyclase by heat-stable enterotoxin of Escherichia coli: studies of tissue specificity, potential receptors, and intermediates. J Infect Dis. 1980 Aug;142(2):220–228. doi: 10.1093/infdis/142.2.220. [DOI] [PubMed] [Google Scholar]
  16. Hamra F. K., Forte L. R., Eber S. L., Pidhorodeckyj N. V., Krause W. J., Freeman R. H., Chin D. T., Tompkins J. A., Fok K. F., Smith C. E. Uroguanylin: structure and activity of a second endogenous peptide that stimulates intestinal guanylate cyclase. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10464–10468. doi: 10.1073/pnas.90.22.10464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hardman J. G., Beavo J. A., Gray J. P., Chrisman T. D., Patterson W. D., Sutherland E. W. The formation and metabolism of cyclic GMP. Ann N Y Acad Sci. 1971 Dec 30;185:27–35. doi: 10.1111/j.1749-6632.1971.tb45232.x. [DOI] [PubMed] [Google Scholar]
  18. Hart C. A., Batt R. M., Saunders J. R. Diarrhoea caused by Escherichia coli. Ann Trop Paediatr. 1993;13(2):121–131. doi: 10.1080/02724936.1993.11747636. [DOI] [PubMed] [Google Scholar]
  19. Jarchau T., Häusler C., Markert T., Pöhler D., Vanderkerckhove J., De Jonge H. R., Lohmann S. M., Walter U. Cloning, expression, and in situ localization of rat intestinal cGMP-dependent protein kinase II. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9426–9430. doi: 10.1073/pnas.91.20.9426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Juilfs D. M., Fülle H. J., Zhao A. Z., Houslay M. D., Garbers D. L., Beavo J. A. A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3388–3395. doi: 10.1073/pnas.94.7.3388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Krause W. J., Freeman R. H., Fort L. R. Autoradiographic demonstration of specific binding sites for E. coli enterotoxin in various epithelia of the North American opossum. Cell Tissue Res. 1990 May;260(2):387–394. doi: 10.1007/BF00318641. [DOI] [PubMed] [Google Scholar]
  22. Laney D. W., Jr, Bezerra J. A., Kosiba J. L., Degen S. J., Cohen M. B. Upregulation of Escherichia coli heat-stable enterotoxin receptor in regenerating rat liver. Am J Physiol. 1994 May;266(5 Pt 1):G899–G906. doi: 10.1152/ajpgi.1994.266.5.G899. [DOI] [PubMed] [Google Scholar]
  23. Laney D. W., Jr, Mann E. A., Dellon S. C., Perkins D. R., Giannella R. A., Cohen M. B. Novel sites for expression of an Escherichia coli heat-stable enterotoxin receptor in the developing rat. Am J Physiol. 1992 Nov;263(5 Pt 1):G816–G821. doi: 10.1152/ajpgi.1992.263.5.G816. [DOI] [PubMed] [Google Scholar]
  24. Mann E. A., Swenson E. S., Copeland N. G., Gilbert D. J., Jenkins N. A., Taguchi T., Testa J. R., Giannella R. A. Localization of the guanylyl cyclase C gene to mouse chromosome 6 and human chromosome 12p12. Genomics. 1996 Jun 1;34(2):265–267. doi: 10.1006/geno.1996.0284. [DOI] [PubMed] [Google Scholar]
  25. Pfeifer A., Aszódi A., Seidler U., Ruth P., Hofmann F., Fässler R. Intestinal secretory defects and dwarfism in mice lacking cGMP-dependent protein kinase II. Science. 1996 Dec 20;274(5295):2082–2086. doi: 10.1126/science.274.5295.2082. [DOI] [PubMed] [Google Scholar]
  26. Schulz S., Green C. K., Yuen P. S., Garbers D. L. Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell. 1990 Nov 30;63(5):941–948. doi: 10.1016/0092-8674(90)90497-3. [DOI] [PubMed] [Google Scholar]
  27. Singh S., Lowe D. G., Thorpe D. S., Rodriguez H., Kuang W. J., Dangott L. J., Chinkers M., Goeddel D. V., Garbers D. L. Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases. Nature. 1988 Aug 25;334(6184):708–712. doi: 10.1038/334708a0. [DOI] [PubMed] [Google Scholar]
  28. Singh S., Singh G., Heim J. M., Gerzer R. Isolation and expression of a guanylate cyclase-coupled heat stable enterotoxin receptor cDNA from a human colonic cell line. Biochem Biophys Res Commun. 1991 Sep 30;179(3):1455–1463. doi: 10.1016/0006-291x(91)91736-v. [DOI] [PubMed] [Google Scholar]
  29. Uhler M. D. Cloning and expression of a novel cyclic GMP-dependent protein kinase from mouse brain. J Biol Chem. 1993 Jun 25;268(18):13586–13591. [PubMed] [Google Scholar]
  30. Vaandrager A. B., Schulz S., De Jonge H. R., Garbers D. L. Guanylyl cyclase C is an N-linked glycoprotein receptor that accounts for multiple heat-stable enterotoxin-binding proteins in the intestine. J Biol Chem. 1993 Jan 25;268(3):2174–2179. [PubMed] [Google Scholar]
  31. Yang R. B., Foster D. C., Garbers D. L., Fülle H. J. Two membrane forms of guanylyl cyclase found in the eye. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):602–606. doi: 10.1073/pnas.92.2.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yu S., Avery L., Baude E., Garbers D. L. Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3384–3387. doi: 10.1073/pnas.94.7.3384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. de Sauvage F. J., Camerato T. R., Goeddel D. V. Primary structure and functional expression of the human receptor for Escherichia coli heat-stable enterotoxin. J Biol Chem. 1991 Sep 25;266(27):17912–17918. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES