Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Oct 15;100(8):2054–2061. doi: 10.1172/JCI119738

Pertussis toxin-sensitive G proteins as mediators of the signal transduction pathways activated by cytomegalovirus infection of smooth muscle cells.

T Shibutani 1, T M Johnson 1, Z X Yu 1, V J Ferrans 1, J Moss 1, S E Epstein 1
PMCID: PMC508396  PMID: 9329970

Abstract

We demonstrated recently that the arachidonic acid (AA) cascade is involved in cytomegalovirus (CMV)-induced generation of reactive oxygen species (ROS) and the activation of nuclear factor (NF)-kappaB in human smooth muscle cells (SMCs). Since AA release from neutrophils is mediated by pertussis toxin (PTx)-sensitive guanine nucleotide-binding (G) proteins, we hypothesized by analogy that CMV stimulates ROS generation in SMCs and ultimately activates NF-kappaB via a PTx-sensitive G protein-coupled pathway. Our first test of this hypothesis demonstrated that PTx blocked AA release induced by CMV infection of SMCs, as well as blocked the terminal products of this reaction, ROS generation and NF-kappaB activation. More proximal components of the pathway were then examined. CMV infection increased phosphorylation and activity of cytosolic phospholipase A2 (cPLA2), an enzyme causing AA release; these effects were inhibited by PTx. CMV infection activated mitogen-activated protein (MAP) kinase, a key enzyme for cPLA2 phosphorylation, an effect also inhibited by PTx. Finally, inhibition of MAP kinase kinase (MAPKK), which phosphorylates and thereby activates MAP kinase, inhibited CMV-induced ROS generation. These data demonstrate that a PTx-sensitive G protein-dependent signaling pathway mediates cellular effects of CMV infection of SMCs. The downstream events include phosphorylation and activation of MAP kinase by MAPKK and subsequent phosphorylation and activation of cPLA2 (with its translocation to cell membranes), followed by stimulation of the AA cascade, which generates intracellular ROS and thereby activates NF-kappaB.

Full Text

The Full Text of this article is available as a PDF (342.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackermann E. J., Dennis E. A. Mammalian calcium-independent phospholipase A2. Biochim Biophys Acta. 1995 Nov 16;1259(2):125–136. doi: 10.1016/0005-2760(95)00143-z. [DOI] [PubMed] [Google Scholar]
  2. Albrecht T., Fons M. P., Boldogh I., AbuBakar S., Deng C. Z., Millinoff D. Metabolic and cellular effects of human cytomegalovirus infection. Transplant Proc. 1991 Jun;23(3 Suppl 3):48-54, discussion 54-5. [PubMed] [Google Scholar]
  3. Alessi D. R., Cuenda A., Cohen P., Dudley D. T., Saltiel A. R. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem. 1995 Nov 17;270(46):27489–27494. doi: 10.1074/jbc.270.46.27489. [DOI] [PubMed] [Google Scholar]
  4. Ali N., Agrawal D. K. Guanine nucleotide binding regulatory proteins: their characteristics and identification. J Pharmacol Toxicol Methods. 1994 Dec;32(4):187–196. doi: 10.1016/1056-8719(94)90086-8. [DOI] [PubMed] [Google Scholar]
  5. Baldwin B. R., Kleinberg M., Keay S. Molecular cloning and expression of receptor peptides that block human cytomegalovirus/cell fusion. Biochem Biophys Res Commun. 1996 Feb 15;219(2):668–673. doi: 10.1006/bbrc.1996.0291. [DOI] [PubMed] [Google Scholar]
  6. Cockcroft S. G-protein-regulated phospholipases C, D and A2-mediated signalling in neutrophils. Biochim Biophys Acta. 1992 Aug 14;1113(2):135–160. [PubMed] [Google Scholar]
  7. Crews C. M., Alessandrini A., Erikson R. L. The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science. 1992 Oct 16;258(5081):478–480. doi: 10.1126/science.1411546. [DOI] [PubMed] [Google Scholar]
  8. Dennis E. A. Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem. 1994 May 6;269(18):13057–13060. [PubMed] [Google Scholar]
  9. Dudley D. T., Pang L., Decker S. J., Bridges A. J., Saltiel A. R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7686–7689. doi: 10.1073/pnas.92.17.7686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Durstin M., Durstin S., Molski T. F., Becker E. L., Sha'afi R. I. Cytoplasmic phospholipase A2 translocates to membrane fraction in human neutrophils activated by stimuli that phosphorylate mitogen-activated protein kinase. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3142–3146. doi: 10.1073/pnas.91.8.3142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Faure M., Voyno-Yasenetskaya T. A., Bourne H. R. cAMP and beta gamma subunits of heterotrimeric G proteins stimulate the mitogen-activated protein kinase pathway in COS-7 cells. J Biol Chem. 1994 Mar 18;269(11):7851–7854. [PubMed] [Google Scholar]
  12. Freeman B. A., Crapo J. D. Biology of disease: free radicals and tissue injury. Lab Invest. 1982 Nov;47(5):412–426. [PubMed] [Google Scholar]
  13. Huang E. S. Human cytomegalovirus. III. Virus-induced DNA polymerase. J Virol. 1975 Aug;16(2):298–310. doi: 10.1128/jvi.16.2.298-310.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kaslow H. R., Burns D. L. Pertussis toxin and target eukaryotic cells: binding, entry, and activation. FASEB J. 1992 Jun;6(9):2684–2690. doi: 10.1096/fasebj.6.9.1612292. [DOI] [PubMed] [Google Scholar]
  15. Lin L. L., Lin A. Y., Knopf J. L. Cytosolic phospholipase A2 is coupled to hormonally regulated release of arachidonic acid. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6147–6151. doi: 10.1073/pnas.89.13.6147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lin L. L., Wartmann M., Lin A. Y., Knopf J. L., Seth A., Davis R. J. cPLA2 is phosphorylated and activated by MAP kinase. Cell. 1993 Jan 29;72(2):269–278. doi: 10.1016/0092-8674(93)90666-e. [DOI] [PubMed] [Google Scholar]
  17. Melnick J. L., Adam E., Debakey M. E. Cytomegalovirus and atherosclerosis. Eur Heart J. 1993 Dec;14 (Suppl K):30–38. [PubMed] [Google Scholar]
  18. Murray-Whelan R., Reid J. D., Piuz I., Hezareh M., Schlegel W. The guanine-nucleotide-binding protein subunit G alpha i2 is involved in calcium activation of phospholipase A2. Effects of the dominant negative G alpha i2 mutant, [G203T]G alpha i2, on activation of phospholipase A2 in Chinese hamster ovary cells. Eur J Biochem. 1995 May 15;230(1):164–169. doi: 10.1111/j.1432-1033.1995.tb20547.x. [DOI] [PubMed] [Google Scholar]
  19. Nemenoff R. A., Winitz S., Qian N. X., Van Putten V., Johnson G. L., Heasley L. E. Phosphorylation and activation of a high molecular weight form of phospholipase A2 by p42 microtubule-associated protein 2 kinase and protein kinase C. J Biol Chem. 1993 Jan 25;268(3):1960–1964. [PubMed] [Google Scholar]
  20. Pang L., Sawada T., Decker S. J., Saltiel A. R. Inhibition of MAP kinase kinase blocks the differentiation of PC-12 cells induced by nerve growth factor. J Biol Chem. 1995 Jun 9;270(23):13585–13588. doi: 10.1074/jbc.270.23.13585. [DOI] [PubMed] [Google Scholar]
  21. Rappuoli R., Podda A., Pizza M., Covacci A., Bartoloni A., de Magistris M. T., Nencioni L. Progress towards the development of new vaccines against whooping cough. Vaccine. 1992;10(14):1027–1032. doi: 10.1016/0264-410x(92)90112-w. [DOI] [PubMed] [Google Scholar]
  22. Sa G., Murugesan G., Jaye M., Ivashchenko Y., Fox P. L. Activation of cytosolic phospholipase A2 by basic fibroblast growth factor via a p42 mitogen-activated protein kinase-dependent phosphorylation pathway in endothelial cells. J Biol Chem. 1995 Feb 3;270(5):2360–2366. doi: 10.1074/jbc.270.5.2360. [DOI] [PubMed] [Google Scholar]
  23. Schievella A. R., Regier M. K., Smith W. L., Lin L. L. Calcium-mediated translocation of cytosolic phospholipase A2 to the nuclear envelope and endoplasmic reticulum. J Biol Chem. 1995 Dec 22;270(51):30749–30754. doi: 10.1074/jbc.270.51.30749. [DOI] [PubMed] [Google Scholar]
  24. Speir E., Modali R., Huang E. S., Leon M. B., Shawl F., Finkel T., Epstein S. E. Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science. 1994 Jul 15;265(5170):391–394. doi: 10.1126/science.8023160. [DOI] [PubMed] [Google Scholar]
  25. Speir E., Shibutani T., Yu Z. X., Ferrans V., Epstein S. E. Role of reactive oxygen intermediates in cytomegalovirus gene expression and in the response of human smooth muscle cells to viral infection. Circ Res. 1996 Dec;79(6):1143–1152. doi: 10.1161/01.res.79.6.1143. [DOI] [PubMed] [Google Scholar]
  26. Staal F. J., Roederer M., Herzenberg L. A., Herzenberg L. A. Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9943–9947. doi: 10.1073/pnas.87.24.9943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sundaresan M., Yu Z. X., Ferrans V. J., Irani K., Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science. 1995 Oct 13;270(5234):296–299. doi: 10.1126/science.270.5234.296. [DOI] [PubMed] [Google Scholar]
  28. Tamura M., Nogimori K., Yajima M., Ase K., Ui M. A role of the B-oligomer moiety of islet-activating protein, pertussis toxin, in development of the biological effects on intact cells. J Biol Chem. 1983 Jun 10;258(11):6756–6761. [PubMed] [Google Scholar]
  29. Wan Y., Kurosaki T., Huang X. Y. Tyrosine kinases in activation of the MAP kinase cascade by G-protein-coupled receptors. Nature. 1996 Apr 11;380(6574):541–544. doi: 10.1038/380541a0. [DOI] [PubMed] [Google Scholar]
  30. Winitz S., Gupta S. K., Qian N. X., Heasley L. E., Nemenoff R. A., Johnson G. L. Expression of a mutant Gi2 alpha subunit inhibits ATP and thrombin stimulation of cytoplasmic phospholipase A2-mediated arachidonic acid release independent of Ca2+ and mitogen-activated protein kinase regulation. J Biol Chem. 1994 Jan 21;269(3):1889–1895. [PubMed] [Google Scholar]
  31. Xia P., Kramer R. M., King G. L. Identification of the mechanism for the inhibition of Na+,K(+)-adenosine triphosphatase by hyperglycemia involving activation of protein kinase C and cytosolic phospholipase A2. J Clin Invest. 1995 Aug;96(2):733–740. doi: 10.1172/JCI118117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zhou Y. F., Leon M. B., Waclawiw M. A., Popma J. J., Yu Z. X., Finkel T., Epstein S. E. Association between prior cytomegalovirus infection and the risk of restenosis after coronary atherectomy. N Engl J Med. 1996 Aug 29;335(9):624–630. doi: 10.1056/NEJM199608293350903. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES