Abstract
Although bile acid transport by bile duct epithelial cells, or cholangiocytes, has been postulated, the details of this process remain unclear. Thus, we performed transport studies with [3H]taurocholate in confluent polarized monolayers of normal rat cholangiocytes (NRC). We observed unidirectional (i.e., apical to basolateral) Na+-dependent transcellular transport of [3H]taurocholate. Kinetic studies in purified vesicles derived from the apical domain of NRC disclosed saturable Na+-dependent uptake of [3H]taurocholate, with apparent Km and Vmax values of 209+/-45 microM and 1.23+/-0.14 nmol/mg/10 s, respectively. Reverse transcriptase PCR (RT-PCR) using degenerate primers for both the rat liver Na+-dependent taurocholate-cotransporting polypeptide and rat ileal apical Na+-dependent bile acid transporter, designated Ntcp and ASBT, respectively, revealed a 206-bp product in NRC whose sequence was identical to the ASBT. Northern blot analysis demonstrated that the size of the ASBT transcript was identical in NRC, freshly isolated cholangiocytes, and terminal ileum. In situ RT-PCR on normal rat liver showed that the message for ASBT was present only in cholangiocytes. Immunoblots using a well-characterized antibody for the ASBT demonstrated a 48-kD protein present only in apical membranes. Indirect immunohistochemistry revealed apical localization of ASBT in cholangiocytes in normal rat liver. The data provide direct evidence that conjugated bile acids are taken up at the apical domain of cholangiocytes via the ASBT, and are consistent with the notion that cholangiocyte physiology may be directly influenced by bile acids.
Full Text
The Full Text of this article is available as a PDF (335.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alpini G., Glaser S., Robertson W., Phinizy J. L., Rodgers R. E., Caligiuri A., LeSage G. Bile acids stimulate proliferative and secretory events in large but not small cholangiocytes. Am J Physiol. 1997 Aug;273(2 Pt 1):G518–G529. doi: 10.1152/ajpgi.1997.273.2.G518. [DOI] [PubMed] [Google Scholar]
- Alpini G., Phillips J. O., Vroman B., LaRusso N. F. Recent advances in the isolation of liver cells. Hepatology. 1994 Aug;20(2):494–514. [PubMed] [Google Scholar]
- Benedetti A., Di Sario A., Marucci L., Svegliati-Baroni G., Schteingart C. D., Ton-Nu H. T., Hofmann A. F. Carrier-mediated transport of conjugated bile acids across the basolateral membrane of biliary epithelial cells. Am J Physiol. 1997 Jun;272(6 Pt 1):G1416–G1424. doi: 10.1152/ajpgi.1997.272.6.G1416. [DOI] [PubMed] [Google Scholar]
- Chandler C. E., Zaccaro L. M., Moberly J. B. Transepithelial transport of cholyltaurine by Caco-2 cell monolayers is sodium dependent. Am J Physiol. 1993 Jun;264(6 Pt 1):G1118–G1125. doi: 10.1152/ajpgi.1993.264.6.G1118. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Christie D. M., Dawson P. A., Thevananther S., Shneider B. L. Comparative analysis of the ontogeny of a sodium-dependent bile acid transporter in rat kidney and ileum. Am J Physiol. 1996 Aug;271(2 Pt 1):G377–G385. doi: 10.1152/ajpgi.1996.271.2.G377. [DOI] [PubMed] [Google Scholar]
- Dawson P. A., Oelkers P. Bile acid transporters. Curr Opin Lipidol. 1995 Apr;6(2):109–114. doi: 10.1097/00041433-199504000-00009. [DOI] [PubMed] [Google Scholar]
- Duffy M. C., Blitzer B. L., Boyer J. L. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles. J Clin Invest. 1983 Oct;72(4):1470–1481. doi: 10.1172/JCI111103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farges O., Corbic M., Dumont M., Maurice M., Erlinger S. Permeability of the rat biliary tree to ursodeoxycholic acid. Am J Physiol. 1989 Apr;256(4 Pt 1):G653–G660. doi: 10.1152/ajpgi.1989.256.4.G653. [DOI] [PubMed] [Google Scholar]
- Gurantz D., Schteingart C. D., Hagey L. R., Steinbach J. H., Grotmol T., Hofmann A. F. Hypercholeresis induced by unconjugated bile acid infusion correlates with recovery in bile of unconjugated bile acids. Hepatology. 1991 Mar;13(3):540–550. [PubMed] [Google Scholar]
- Hagenbuch B., Meier P. J. Sinusoidal (basolateral) bile salt uptake systems of hepatocytes. Semin Liver Dis. 1996 May;16(2):129–136. doi: 10.1055/s-2007-1007226. [DOI] [PubMed] [Google Scholar]
- Hagenbuch B., Stieger B., Foguet M., Lübbert H., Meier P. J. Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10629–10633. doi: 10.1073/pnas.88.23.10629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hylemon P. B., Bohdan P. M., Sirica A. E., Heuman D. M., Vlahcevic Z. R. Cholesterol and bile acid metabolism in cultures of primary rat bile ductular epithelial cells. Hepatology. 1990 Jun;11(6):982–988. doi: 10.1002/hep.1840110612. [DOI] [PubMed] [Google Scholar]
- Jacquemin E., Hagenbuch B., Stieger B., Wolkoff A. W., Meier P. J. Expression cloning of a rat liver Na(+)-independent organic anion transporter. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):133–137. doi: 10.1073/pnas.91.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LACK L., WEINER I. M. In vitro absorption of bile salts by small intestine of rats and guinea pigs. Am J Physiol. 1961 Feb;200:313–317. doi: 10.1152/ajplegacy.1961.200.2.313. [DOI] [PubMed] [Google Scholar]
- Lazaridis K. N., Pham L., Vroman B., de Groen P. C., LaRusso N. F. Kinetic and molecular identification of sodium-dependent glucose transporter in normal rat cholangiocytes. Am J Physiol. 1997 May;272(5 Pt 1):G1168–G1174. doi: 10.1152/ajpgi.1997.272.5.G1168. [DOI] [PubMed] [Google Scholar]
- Lesage G., Glaser S. S., Gubba S., Robertson W. E., Phinizy J. L., Lasater J., Rodgers R. E., Alpini G. Regrowth of the rat biliary tree after 70% partial hepatectomy is coupled to increased secretin-induced ductal secretion. Gastroenterology. 1996 Dec;111(6):1633–1644. doi: 10.1016/s0016-5085(96)70027-6. [DOI] [PubMed] [Google Scholar]
- Liang D., Hagenbuch B., Stieger B., Meier P. J. Parallel decrease of Na(+)-taurocholate cotransport and its encoding mRNA in primary cultures of rat hepatocytes. Hepatology. 1993 Nov;18(5):1162–1166. [PubMed] [Google Scholar]
- Meier P. J. Molecular mechanisms of hepatic bile salt transport from sinusoidal blood into bile. Am J Physiol. 1995 Dec;269(6 Pt 1):G801–G812. doi: 10.1152/ajpgi.1995.269.6.G801. [DOI] [PubMed] [Google Scholar]
- Moyer M. S., Heubi J. E., Goodrich A. L., Balistreri W. F., Suchy F. J. Ontogeny of bile acid transport in brush border membrane vesicles from rat ileum. Gastroenterology. 1986 May;90(5 Pt 1):1188–1196. doi: 10.1016/0016-5085(86)90384-7. [DOI] [PubMed] [Google Scholar]
- Patel T., Bronk S. F., Gores G. J. Increases of intracellular magnesium promote glycodeoxycholate-induced apoptosis in rat hepatocytes. J Clin Invest. 1994 Dec;94(6):2183–2192. doi: 10.1172/JCI117579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel V. G., Shum-Siu A., Heniford B. W., Wieman T. J., Hendler F. J. Detection of epidermal growth factor receptor mRNA in tissue sections from biopsy specimens using in situ polymerase chain reaction. Am J Pathol. 1994 Jan;144(1):7–14. [PMC free article] [PubMed] [Google Scholar]
- Pongracz J., Clark P., Neoptolemos J. P., Lord J. M. Expression of protein kinase C isoenzymes in colorectal cancer tissue and their differential activation by different bile acids. Int J Cancer. 1995 Mar 29;61(1):35–39. doi: 10.1002/ijc.2910610107. [DOI] [PubMed] [Google Scholar]
- Roberts S. K., Kuntz S. M., Gores G. J., LaRusso N. F. Regulation of bicarbonate-dependent ductular bile secretion assessed by lumenal micropuncture of isolated rodent intrahepatic bile ducts. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9080–9084. doi: 10.1073/pnas.90.19.9080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts S. K., Yano M., Ueno Y., Pham L., Alpini G., Agre P., LaRusso N. F. Cholangiocytes express the aquaporin CHIP and transport water via a channel-mediated mechanism. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):13009–13013. doi: 10.1073/pnas.91.26.13009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shneider B. L., Dawson P. A., Christie D. M., Hardikar W., Wong M. H., Suchy F. J. Cloning and molecular characterization of the ontogeny of a rat ileal sodium-dependent bile acid transporter. J Clin Invest. 1995 Feb;95(2):745–754. doi: 10.1172/JCI117722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stravitz R. T., Rao Y. P., Vlahcevic Z. R., Gurley E. C., Jarvis W. D., Hylemon P. B. Hepatocellular protein kinase C activation by bile acids: implications for regulation of cholesterol 7 alpha-hydroxylase. Am J Physiol. 1996 Aug;271(2 Pt 1):G293–G303. doi: 10.1152/ajpgi.1996.271.2.G293. [DOI] [PubMed] [Google Scholar]
- Tietz P. S., Holman R. T., Miller L. J., LaRusso N. F. Isolation and characterization of rat cholangiocyte vesicles enriched in apical or basolateral plasma membrane domains. Biochemistry. 1995 Nov 28;34(47):15436–15443. doi: 10.1021/bi00047a007. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vroman B., LaRusso N. F. Development and characterization of polarized primary cultures of rat intrahepatic bile duct epithelial cells. Lab Invest. 1996 Jan;74(1):303–313. [PubMed] [Google Scholar]
- Wilson F. A. Intestinal transport of bile acids. Am J Physiol. 1981 Aug;241(2):G83–G92. doi: 10.1152/ajpgi.1981.241.2.G83. [DOI] [PubMed] [Google Scholar]
- Wilson F. A., Treanor L. L. Glycodeoxycholate transport in brush border membrane vesicles isolated from rat jejunum and ileum. Biochim Biophys Acta. 1979 Jul 5;554(2):430–440. doi: 10.1016/0005-2736(79)90382-1. [DOI] [PubMed] [Google Scholar]
- Wong M. H., Oelkers P., Craddock A. L., Dawson P. A. Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J Biol Chem. 1994 Jan 14;269(2):1340–1347. [PubMed] [Google Scholar]
- Wong M. H., Oelkers P., Dawson P. A. Identification of a mutation in the ileal sodium-dependent bile acid transporter gene that abolishes transport activity. J Biol Chem. 1995 Nov 10;270(45):27228–27234. doi: 10.1074/jbc.270.45.27228. [DOI] [PubMed] [Google Scholar]
- Yano M., Marinelli R. A., Roberts S. K., Balan V., Pham L., Tarara J. E., de Groen P. C., LaRusso N. F. Rat hepatocytes transport water mainly via a non-channel-mediated pathway. J Biol Chem. 1996 Mar 22;271(12):6702–6707. doi: 10.1074/jbc.271.12.6702. [DOI] [PubMed] [Google Scholar]
- Yoon Y. B., Hagey L. R., Hofmann A. F., Gurantz D., Michelotti E. L., Steinbach J. H. Effect of side-chain shortening on the physiologic properties of bile acids: hepatic transport and effect on biliary secretion of 23-nor-ursodeoxycholate in rodents. Gastroenterology. 1986 Apr;90(4):837–852. doi: 10.1016/0016-5085(86)90859-0. [DOI] [PubMed] [Google Scholar]